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Common DNA sequence variation
influences epigenetic aging in African
populations
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Aging is associated with genome-wide changes in DNA methylation in humans, facilitating the
development of epigenetic agepredictionmodels. However, thesemodels have been trainedprimarily
onEuropean-ancestry individuals andnoneaccount for the impact ofmethylationquantitative trait loci
(meQTL). To address these gaps, we analyze the relationships between age, genotype, and CpG
methylation in 3 understudied populations: central African Baka (n = 35), southern African ‡Khomani
San (n = 52), and southern African Himba (n = 51). We show that published prediction methods yield
higher mean errors in these cohorts compared to European-ancestry individuals and find that
unaccounted-for DNA sequence variationmay be a significant factor underlying this loss of accuracy.
We leverage information about the associations between DNA genotype and CpG methylation to
develop an age predictor that is minimally influenced by meQTL and show that this model remains
accurate across a broad range of genetic backgrounds. Intriguingly, we also find that the older
individuals and those with lower epigenetic age acceleration carry more genetic variants linked to
reduced epigenetic age. These findings support the hypothesis that multiple heritable factors
collectively influence healthspan and longevity in human populations.

The aging process is associated with significant, genome-wide epigenetic
changes. In particular, DNAmethylation levels at specific cytosine-guanine
dinucleotides (CpGs) are strongly associatedwith chronological age, driving
the development of a suite of age prediction algorithms referred to as ‘epi-
genetic clocks’. While thousands of CpG sites across the genome exhibit
consistent patterns of increasing or decreasing DNA methylation with
age1–3, accurate age predictors can be constructed from remarkably few
CpGs4–11. The first DNA methylation-based predictors were trained on
individuals’ chronological age (i.e., the actual number of years lived), and
found that epigenetic clocks could be more accurate and precise than other
molecular methods of age estimation, such as telomere length12–14. Sub-
sequent research found that the error in epigenetic clock-based age estimates
(i.e., the deviation between true and predicted age) is also biologically

meaningful, and that accelerated epigenetic age is associated with multiple
age-related diseases15–18. This observation spurred the next generation of
epigenetic predictors, which included PhenoAge19, GrimAge20,21, and
FitAge22, that were specifically trained to predict morbidity, mortality, and
other aspects of biological aging.

Deviation between one’s predicted and actual age, i.e., epigenetic age
acceleration, is influenced by a host of environmental and lifestyle factors23,
leading researchers to examine its relationship to systemic health disparities
experienced byminorities in cosmopolitan populations24–31. However, these
epigenetic clocks are almost exclusively trained on European-descent
populations living in industrialized societies and are rarely validated across a
range of genetic backgrounds and environmental contexts. Studies that have
assessed popular predictors in genetically diverse cohorts find inconsistent
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patterns. For example, bothAfrican-American andHispanic cohorts exhibit
systematically higher epigenetic age under some clocks but systematically
lower epigenetic age under others19,32–34. Similarly, a recent study found
previously identified signals of epigenetic age acceleration in European-
ancestry Alzheimer’s disease patients35 did not replicate in admixed, diverse
ancestry cohorts36. Finally, while many of these clocks have been applied to
diverse African populations from places such as South Africa37, Ghana38,
and Côte d’Ivoire39, some exhibit lower predictive accuracy compared to
European cohorts, indicating reduced transferability in these contexts.
Systematic differences among or within populations might reflect real
variation in the aging process, but without first confirming that epigenetic
clocks maintain their predictive power across diverse population contexts,
researchers should be cautious about interpreting the causes and con-
sequences of epigenetic age acceleration in relation to human health40.

A few recent studies have found that prediction accuracy does indeed
decline when clocks trained on one genetic ancestry are applied to indivi-
duals of a diverged genetic ancestry36,41–43,mirroringfindings from studies of
polygenic risk score (PRS) transferability9,41–45. This observation might be
partially explained by the relatively high heritability of DNA methylation
and the strong influence of individual single nucleotide polymorphisms
(SNPs)46–48; 10%ofCpG sites exhibit heritability greater than 50%, andup to
45% of CpG sites assayed by the Illumina 450k array show influence of
methylation quantitative trait loci (meQTL), 90% of which act locally, in
cis49. This significant genetic control of DNAmethylation also explains why
genome-wide variation in DNAmethylation broadly recapitulates patterns
of population structure observed in human genetic data50–55.

Previous work has identified meQTL as being important drivers of
variation at some age-associated CpGs12,13,36,56. If CpGs influenced by
meQTL are used to construct an epigenetic clock, its accuracy might be
expected to decline when applied to a genetically diverged population, as
predictor coefficients will be biased by themeQTL frequency of the training
cohort.

In order to address these issues, we test several popular epigenetic
clocks on genetically diverse populations and characterize the influence of
genetic variation onDNAmethylation both within and across populations.
We analyze saliva-derived DNA methylation data from three African
populations representing a broad swath of genetic ancestry: Baka central
African foragers, southern African ‡Khomani San foragers, and southern
African Himba pastoralists. Each of these groups has a distinct, complex
evolutionary history and currently occupies different ecological regions
across the continent, generating among-population variation in both
genetic and environmental factors that can influenceDNAmethylation.We
compare the predictive accuracy of 10 published epigenetic clocks on these
African cohorts to publicly available data more closely matching the vast
majority of predictor training data, from European-ancestry and Hispanic/
Latino cohorts34. Using paired genotype data for the African individuals in
our dataset and newly available, ancestry-matched imputation panels57, we
estimate heritability and identify significant cis-meQTL for age-associated
CpGs across the genome. Importantly, we find that a large proportion of
CpGs included in establishedpredictors are influencedbymeQTL identified
in our modestly-sized cohorts. We show that not accounting for genetic
variation at meQTL contributes to error in epigenetic age prediction and
develop epigenetic clocks that specifically exclude CpGswith significant cis-
heritability. Finally, we develop a genotype-based ‘epigenetic aging score’
(EAS), which captures the effects of epigenetic age-increasing variants from
across the genome under an additive model. We find that EAS correlates
with independently derived estimates of epigenetic age acceleration, sug-
gesting biologically meaningful effects at some of these meQTL (Study
design in Supplementary Fig. 1).

Results
Evaluating the performance of published age predictors on
African cohorts
We tested 10 age prediction methods (see “Methods” section) that were
trained primarily on European-ancestry cohorts living in Europe and the

United States: the Horvath multi-tissue age predictor12, the Hannum blood
clock13, theHorvath skin andblood clock58, the Zhang elastic net predictor59,
PhenoAge19, two iterations of GrimAge, both using either true or predicted
age20,21, and FitAge22. We applied the predictors to saliva-derived DNA
methylation data from 3 African cohorts and compared performance to a
publicly available tissue-matched dataset of European-ancestry and His-
panic/Latino individuals (GEO accession GSE7887434). Because some
clocks show age-dependent accuracy60, we focus on age-adjusted prediction
errors when comparing populations to account for the different age dis-
tributions across cohorts. We found that 9 of the predictors exhibited sig-
nificant differences in age-adjusted error between at least one African
population and the European and Hispanic/Latino datasets (Fig. 1; Sup-
plementary Tables 1 and 2; Supplementary Figs. 2 and 3). There was not a
consistent pattern of over- or under-estimation for the African cohorts
relative to the European and Hispanic/Latino individuals; for example, the
Himba as a group were estimated to be younger than Europeans by most
clocks, but older byGrimAge2 basedon true age; ‡Khomani San individuals
were estimated to be younger than Europeans and Hispanic/Latino indi-
viduals by the Hannum and Zhang clocks, but older by FitAge and
GrimAge. We also found significant differences in prediction error among
the three African cohorts. Only the Horvath multi-tissue clock showed no
differences in age-adjusted error in the African samples as compared to the
European and Hispanic/Latino samples.

We considered that differences in predictive accuracy might be due to
variation in cell-type composition. Although all the samples were nominally
saliva-derived and we restricted comparisons to samples predicted to be
saliva or blood-derived (see “Methods” section), significant among-
population variation in the proportions of white blood cell types and epi-
thelial cells might still exist. With the exception of the Horvath multi-tissue
clock12 and the skin and blood clock58, the predictors that we evaluated were
trained primarily on whole blood-derived DNA methylation data and are
not expected to perform uniformly well across tissues. Therefore, if the cell-
type composition of samples varied systematically across cohorts, this could
produce differences in predictive accuracy that appear to be population-
specific. We were especially concerned that the high frequency of the Duffy
null variant in West African populations61, which is associated with lower
neutrophil count in whole blood62–64, could also drive ancestry-associated
differences in saliva cell-type composition.

As expected65, we found the Duffy null variant is fixed, or nearly fixed,
in the Himba and Baka (allele frequency of 100% and 94%, respectively).
The frequency of Duffy null in the ‡Khomani San cohort was 27%, con-
sistent with gene flow from West African-ancestry populations in an
environment where selection for malarial resistance is low66. Because of the
intermediate frequency of this allele in the ‡Khomani San andBaka cohorts,
we were able to test for a relationship between Duffy null genotype and
estimated neutrophil proportion, as well as with overall predictive accuracy.
We applied a reference-based cell-type deconvolutionmethod67 to estimate
cell-type proportions in each sample (see “Methods” section)68. We
observed a slight but non-significant negative relationship between neu-
trophil proportion andDuffy genotype in both the ‡Khomani San andBaka
cohorts (Supplementary Fig. 4). However, we did not find that this led to a
significant difference in prediction error across any of the 10 predictors
(Supplementary Fig. 5).

Interestingly, there were fewer significant pairwise differences among
cohorts across 10 different measures of epigenetic age acceleration (Sup-
plementary Fig. 6).Most of thesemeasureswerederived from theHorvath12,
Hannum13, PhenoAge19, and GrimAge20,21 clocks, while one was developed
independently as aDNAmethylation-based estimate of the rate of telomere
shortening69 (see “Methods” section). Based on the PhenoAge and
GrimAge-based epigenetic age acceleration metrics, the Himba and Baka
both had significantly higher acceleration than theHispanic samples for the
former metric and higher acceleration than the European samples for the
latter metric. In line with this, the Himba had significantly shorter
methylation-based estimates of telomere length for their age than the His-
panic cohort, and the Baka had significantly shorter estimates of telomere
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length for their age than both the European and Hispanic cohorts (Sup-
plementary Fig. 6).

Epigenome-wide association study for age
We conducted an epigenome-wide association study (EWAS) to identify
CpG sites whose methylation levels are associated with age for each of our
three population cohorts.We identified347, 149, and282CpGsites thatmet
the Bonferroni-corrected threshold for significance in the Himba, ‡Kho-
mani San, and Baka, respectively, for a total of 567 unique sites (Supple-
mentary Fig. 7A). 31 of these sites were identified independently in all three
populations.We found that the estimated effect sizes were highly correlated
in all three pairwise comparisons after conditioning on significance in at
least 1 of the populations (Fig. 2A–C).

We next conducted a fixed-effect meta-analysis of our three popula-
tions to maximize our power to detect DNA methylation-age associations.
Our meta-analysis identified 3211 significant age associations across the
355,103 CpG sites common to all three datasets (Fig. 2D). We found that
1637 of these overlappedwith previously identified age-associatedCpG sites
identified in 34 published studies (Supplementary Table 3), including our
previous study of the Baka and ‡Khomani San datasets70.

Identification of cis-meQTL associations in African data
Next, we identified cis-meQTL that influence DNA methylation in our
cohorts in order to understand the impact of nearby heritable variation on
age-associatedCpGsites.We conducted a ‘baseline’ cis-meQTL scanof each
African cohort separately by testing a set of common, LD-pruned variants
fallingwithin 200 kbof eachCpGsite for associationwithDNAmethylation

level (see “Methods” section). We identified 198,775, 75,120, and
61,525 significant meQTL in the Himba, ‡Khomani San, and Baka,
respectively, affecting 11.7% (83,527), 11.1% (46,441), and 8% (32,167) of
assayed CpG sites (Supplementary Fig. 7B).We then assessed the overlap of
CpGs influenced by cis-meQTL and those whose DNA methylation levels
are associated with age in our meta-analysis EWAS results. We found that
645of the3211 (20.1%) significant sites fromthemeta-analysis of theEWAS
results are influenced by an meQTL identified in at least one population.
Because our variant sets were different for each population and were LD
pruned independently, the same SNP was rarely identified across multiple
populations; however, we identified thousands of CpG sites that were
influenced by meQTL in at least two populations (Supplementary Fig. 7B).
In cases where the same SNP was identified as a significant meQTL we
found that their effect sizes were very highly correlated across populations
(Pearson correlations: Baka–‡Khomani San r = 0.97; Himba–‡Khomani
San r = 0.96; Himba–Baka r = 0.97) (Fig. 3A).

We also conducted an ‘extended’ cis-meQTL analysis using the
FUSION71 software package that considered a 1Mb window around each
CpG site to first estimate cis-heritability and then, for significantly heritable
sites, model SNP weights using 4 regression methods: elastic net, LASSO72,
SuSie (sum of single-effect)73, and best single meQTL (see “Methods”
section)71.We usednon-LD-pruned genotype data for this analysis to gauge
the extent towhich the genetic architectureofCpGmethylation is conserved
across populations.We thenmoved forwardwith the best performing of the
4 regression models for each individual CpG site (Supplementary Table 4).

Even with our modest sample sizes, we found that a substantial pro-
portion of CpG sites (6.7%, 8.2%, and 10.2% of CpGs tested in the Himba,

Fig. 1 | Distributions of age-adjusted prediction error across diverse cohorts.
Beeswarm plots show differences in age prediction error for samples predicted to be
saliva by dnamage.clockfoundation.org90, adjusted for individual age, amongHimba
(n = 49), ‡Khomani San (n = 46), Baka (n = 35), Hispanic/Latino (n = 69), and

European (n = 130) samples across 8 published epigenetic clocks. We tested for
significant differences in age-adjusted prediction error among all populations by
ANOVA, followed by a Tukey test to identify significant pairwise differences. *
indicates an adjusted p-value of <0.05, ** <0.01, and *** <0.001.
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‡Khomani San, and Baka, respectively) exhibited significant cis-heritability
(p < 0.05; Supplementary Fig. 7C). For these sites, cis-heritability of CpG
methylation was significantly, but weakly, correlated across all pairs of
populations (Pearson correlations: Baka–‡Khomani San r = 0.17; Him-
ba–‡Khomani San r = 0.15; Himba–Baka r = 0.17) (Fig. 3D–F). We also
tested the correlation of non-zero SNP weights from the FUSION71 models
across population pairs, scaling weights within each regression model type,
when the same SNP was reported to have a non-zero weight in multiple
populations. We expected correlations to be lower than in the baseline
meQTL scan, as different regression models could be selected as the best-
performing model across populations. Weights determined by the models
allowing for joint cis-SNP effects (elastic net, LASSO, and SuSie) are
dependent on the specific cis-variant sets in each population andwould lead
to lower correlations of weights across populations than correlating effect
sizes from single variant models, which showed impressively high correla-
tions (Fig. 3A). We did, however, still find moderately and significantly
correlated non-zero SNP weights from the FUSION models (Pearson cor-
relations: Baka–‡Khomani San r = 0.15; Himba–‡Khomani San r = 0.17;
Himba–Baka r = 0.24) (Fig. 3G–I).

Accounting for cis-genetic influence in EWAS improves
associations
SincemeQTL variation is expected to add noise to the relationship between
CpG methylation and age13,70, we reasoned that regressing out SNP effects
for significant meQTL from the corresponding DNA methylation values
should improve age associations. To test this, we re-ran our population-
specific EWAS after first regressing out the effect of the top meQTL geno-
type identified by our baseline scan from the respective CpG site’s DNA
methylation values. As expected, this approach resulted in a greater number
of CpG sites passing the significance threshold compared to the original
EWAS: 405 (increase of 58), 164 (increase of 15), and 312 (increase of 30), in
the Himba, ‡Khomani San, and Baka, respectively (Supplementary
Fig. 8A–F). This represents 751 unique sites identified across the three
populations, an additional 96 sites compared to the original EWAS. 655 of
the 657 original unique associations were replicated in at least one popu-
lation in the meQTL-regressed EWAS.

We conducted ameta-analysis on themeQTL-regressedEWAS results
and found 3,427 significant associations, including 224 CpG sites that were
not significant in the original meta-EWAS (Supplementary Fig. 8G, H).
3203 of the 3211 associations identified in the initial meta-EWAS remained
significant in themeQTL-regressedmeta-EWAS.We found that for the 645
CpG sites that were significantly associated with age in the original meta-
EWAS and also influenced by meQTL, 34.3% showed an improved asso-
ciation with age as reflected by a p-value reduction of at least one order of
magnitude.

Across all CpG sites influenced bymeQTL, 4.7%, 2.6%, 6.8%, and 2.4%
improved their associationwith age by at least one order ofmagnitude in the
Himba, ‡Khomani San, Baka, and meta-analysis, respectively (Fig. 4A–D).
In order to ensure that this observed improvement was not spurious, we
conducted a permutation analysis where we instead regressed out genotype
values for a random SNP from a different chromosome. Across 100 per-
mutations, only 0.03%, 0.08%, 0.06%, and 0.03% of CpG sites (Fig. 4A–D),
on average, exhibited a similar magnitude of improvement, indicating that
accounting for real meQTL associations does indeed improve our power to
detect the relationship between CpG methylation and age (Fig. 4E–G).

cis-meQTL influencing popular epigenetic clocks are
differentiated across populations
If meQTL influence a significant proportion of CpG sites used as predictors
in epigenetic clocks, we would expect increased prediction error in popu-
lation samples with divergent meQTL frequencies because predictor coef-
ficients will be calibrated based on the average meQTL genotype of the
training data. This would lead to particularly poor performance in out-of-
sample prediction when an meQTL is very rare or invariant in the training
data, but has common segregating variation in the target population. This is
precisely the case in our study, as most published epigenetic clocks are
trained on European-ancestry cohorts, but are being applied in African
populations that have higher overall levels of heterozygosity74.

We assessed the proportion of CpGs included in 6 of the published
predictors that are influenced by meQTL identified in our baseline and
extended scans; we excludedGrimAge andGrimAge2 as the details of these
models are not publicly available. We found that between 22% and 43% of

Fig. 2 | Strong correlation of epigenome-wide association effect sizes across
populations. (A–C) show the correlation of estimated effect sizes of DNA methy-
lation on age for all pairwise comparisons among the Himba (n = 51), ‡Khomani
San (n = 52), and Baka (n = 35). The black points indicate effect sizes for CpG
sites that were significantly associated with age in at least one of the 3 populations.
The red kernel density shows the distribution of effect sizes for CpG sites that
were not significantly associated with age in any population. The Pearson
correlation between effect sizes for the significant CpGs (black points) and the

significance of the correlation is indicated at the bottom right of each panel. (D) is a
Manhattan plot depicting associations between DNA methylation and age along
the entire genome from a meta-analysis of the individual epigenome-wide asso-
ciation studies run in the three populations. A total of 3211 CpG sites exceed
the threshold for significance, a p-value of 0.05 corrected for the number of
CpG sites tested (red dotted line). Only non-significant effect sizes with an
absolute value less than 1000 were included in the kernel density to restrict
axes ranges for visualization purposes.
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CpGs comprising the tested predictors are influenced by meQTL (Supple-
mentary Data 1).

We next investigated meQTL allele frequencies in our 3 African
populations and European populations from the 1000 Genomes Project75

(Phase 3 European super-population,n = 2504 individuals).We limited this
analysis to meQTL discovered from the baseline meQTL scans and aligned
both 1000 Genomes and the African populations’ reference and alternate
alleles to match hg37. We found that the meQTLs influencing published
epigenetic age predictorswere oftenhighly differentiated betweenEuropean
ancestry and our African populations (Fig. 5A–C). On average, these
meQTLhad a 10.6%, 13%, and 12.4% difference in frequency in theHimba,
‡Khomani San, and Baka compared to Europeans (mean FST of 0.11, 0.9,
and 0.12, respectively). Importantly, 5.2%, 6.7%, and 9.2% of these meQTL
are rare (<1% frequency) or invariant in Europeans, but common (>5%
frequency) in the Himba, ‡Khomani San, and Baka. The CpGs influenced
by thesemeQTLwould showparticularly poor relative performance in non-
European samples inwhich these variants segregate at common frequencies
(Fig. 5D–F, Supplementary Data 2). These proportions are likely an
underestimate, as up to 3.5% of the meQTL we identify in the Himba,

‡Khomani San, and Baka were not present in the 1000 Genomes quality-
controlled, biallelic variant set and could not be included in this analysis.

Epigenetic clock performance is improved by excluding the
effects of heritable variation
Given that variation at meQTL can reduce power to detect age associations
and that meQTL frequencies can vary substantially across human popula-
tions (Fig. 5A–C), it seems prudent to exclude CpG sites under known cis-
genetic influence when developing epigenetic clocks; this should not only
optimize within-cohort performance, but also out-of-cohort transferability.
In order to test this hypothesis, we used elastic net regression to construct
two types of epigenetic clocks using the combined data from all three
African populations to maximize our power and reduce overfitting to any
one population. Of the CpG sites common to the Himba, ‡Khomani San,
Baka, and4out-of-cohort samples of different genetic ancestries,we allowed
the elastic net regression to select either from 1) CpG sites without sig-
nificant cis-heritability (not significantly influenced by a cis-meQTL andnot
significantly cis-heritable in any of the African populations, n = 213,689), or
from 2) cis-heritable CpGs (significantly influenced by cis-meQTL or

Fig. 3 | Shared cis-genetic architecture of CpG methylation among populations.
(A–C) show the Pearson correlations of estimated effect sizes of SNP genotype on
DNA methylation level from baseline cis-meQTL scans of the Himba (n = 51),
‡Khomani San (n = 52), and Baka (n = 35) for cases where the same SNP-CpG
relationship was identified in both populations. (D–F) show the Pearson correla-
tions in cis-heritability measures for significantly heritable (p-value < .05) CpG sites
across all pairwise combinations of populations. (G–I) show the Pearson

correlations of cis-SNP weights on DNA methylation levels estimated from the
FUSION regression models for the instances where the same SNP was estimated to
have a non-zero weight across different populations, but the selected model was
allowed to vary between populations. Weights were scaled within model type. In
each panel, the dashed line represents the line of equality. The significance of the
correlations is noted beneath the Pearson R values.
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determined to have significant cis-heritability in any of the 3 African
populations, n = 116,132). We refer to these as our “non-heritable” and
“heritable” epigenetic clocks, respectively.

Confirming the influence of meQTL in prediction transferability, we
found that the non-heritable epigenetic clocks were more accurate than the
heritable epigenetic clocks across 100 models, each tested on independent,
held-out Himba, ‡Khomani San, and Baka test samples (Table 1). We next
tested whether the non-heritable models would have better transferability
across a diverse range of ancestries from tissue-matched samples. Sup-
porting our hypothesis, the non-heritable models performed significantly
better in the European- and Hispanic/Latino-ancestry cohorts as well as an
additional Japanese cohort (n = 19)76 (Table 1; Fig. 6). However, in an
independent African-American cohort (n = 64)77, both heritable and non-
heritable clocks exhibited similar overall error (Table 1; Fig. 6).We speculate
that this is due to our models failing to capture the full extent of meQTL
diversity present in admixed African-Americans. Our epigenetic clocks
exhibit predictive performance in African, European-ancestry, Hispanic/
Latino, African-American, and Japanese cohorts that is comparable to the
reported test sample errors in the original Horvath and Hannum et al.
publications12,13 (Table 1; Fig. 6). Overall, these results lend credence to the
notion that heritable variation at meQTL negatively impacts both the
transferability of epigenetic clocks as well as their overall predictive
performance.

The combined effects of age-associated meQTL correlate with
age and epigenetic age acceleration
Looking beyond age prediction, we wondered if meQTL variation at age-
associated CpG sites had biologically meaningful consequences for aging
and longevity. To this end, we developed genotype-based epigenetic aging
scores (EAS), which sum up the effects of meQTL variants on DNA

methylation weighted by the effect of DNA methylation on age. EAS are
analogous to polygenic scores that captures an individual genome’s total
burden of epigenetic age-elevating variants. For each cohort, we build an
EAS model based on CpG sites that are both associated with age in that
population’s EWAS at a relaxed significance threshold (p < 0.001) and are
significantly influenced by a cis-genetic variant in that population’s baseline
meQTL scan (see “Methods” section). Our ‡Khomani Sanmodelwas based
on668SNPsnear 718distinctCpGs, theBakamodel on987SNPsnear 1075
CpGs, and the Himba model on 1921 SNPs near 1995 CpGs. We then
applied each of these models to genotype data from individuals within that
cohort. Interestingly, we found that older individuals tended to have lower
EAS, and consistently observed an overall negative relationship with age
across all comparisons (Fig. 7A). Based on this observation, we hypothesize
that having a lower burden of epigenetic age-elevating genetic variants
might enable these individuals to achieve greater longevity.

Seeking additional evidence to evaluate this hypothesis, we compared
these genotype-based EAS valueswith publishedmeasures of epigenetic age
acceleration that are based solely on DNA methylation data19,20,69,78. These
epigenetic age acceleration metrics have been shown to be associated with
increased risk of multiple age-related conditions as well as all-cause
mortality15,78–80. Interestingly, we found associations between EAS and
several of thesemeasures of biological aging or accelerated epigenetic aging;
EAS trends towards being positively correlated with measures of ‘intrinsic’
and ‘extrinsic’ epigenetic age acceleration78, while it trends towards being
negatively correlated with an age-adjusted DNA methylation-based esti-
mate of telomere length69 (Fig. 7B–F, Supplementary Fig. 9). While not
always significant, the trends we observe are consistently in the expected
direction across populations and across accelerationmetrics, supporting the
role of genetic variants in influencing the pace of biological and epigenetic
aging12,13,56,81.

Fig. 4 | Accounting for meQTL genotype improves power to detect age associa-
tions. (A–D) show p-values for the association between CpG methylation and
chronological age from the unadjusted epigenome-wide association study (x-axes)
versus p-values from the meQTL-adjusted epigenome-wide association study (y-
axes) in the Himba (n = 51), ‡Khomani San (n = 52), Baka (n = 35), and meta-
analysis of the 3 populations. Red points show the results of 100 permutations where

a random SNP’s genotype was regressed out rather than the true meQTL, whereas
black points show the results from regressing out the true meQTL. (E–G) highlight
the diamond points from (A–C), respectively, illustrating the influence of genotype
on DNAmethylation at CpG sites showing particularly large p-value improvements
in the adjusted EWAS relative to the unadjusted EWAS.
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Discussion
As a result of a growing interest in using epigenetic age predictors in clinical
settings82–84, models such as FitAge, PhenoAge, and GrimAge have been
explicitly trained to capture traits such as maximal oxygen uptake
(VO2max), healthspan, and lifespan, respectively19–22. Epigenetic clocks
intended for forensic applications, on the other hand, are concerned with
accurately predicting an individual’s chronological age, independent of
lifestyle or overall health. However, regardless of the goals of any particular
epigenetic clock, relatively little attention has been paid to the issue of
transferability; i.e., howwell a predictivemodel trained in one population or
cohort performs when applied to another40,85. Researchers have been
grappling with an analogous issue in the development of polygenic risk
scores (PRS), models that predict an individual’s risk of complex disease
based on their genotype. While initially heralded as a promising tool that
would enable personalized genomic medicine, recent work demonstrates
that applying PRS out-of-cohort can actually worsen health disparities due
to poor transferability across human populations45,86–88. Some of the

underlyingmechanisms that account for PRS’s lack of generalizability, such
as differences in allele frequencies and trait heritability across populations,
may also be relevant for epigenetic clocks. In this work, we focused on
discerning the influenceof genetic factors onepigenetic clock transferability,
but a loss of transferability could also be driven by variation in lifestyle or
environmental factors across populations, which can directly impact DNA
methylation patterns without perturbing the underlying DNA sequence

In testing several epigenetic clocks on three diverseAfrican cohorts, we
find that almost all exhibit significant among-population differences in
prediction error, even after accounting for differences in data missingness,
cohort age ranges, and potential tissue-predictor mismatch (see “Methods”
section). Only the Horvath multi-tissue predictor showed no significant
differences in age-adjusted error among cohorts (Fig. 1). This differs from
previous results from our group and others that found that the Horvath
multi-tissue predictor produces systematically different estimates for
African-ancestry and Hispanic/Latino individuals compared to European-
ancestry individuals34,36,70,89. This discrepancy may be due in part to

Fig. 5 | Differentiated meQTL influence CpG predictors in published epigenetic
clocks. (A–C) show the allele frequencies of meQTL identified in each of the three
African populations, Himba (n = 51), ‡Khomani San (n = 52), and Baka (n = 35),
relative to their frequency in 1000 Genomes Phase 3 Europeans. The color of the
points corresponds to the density of neighboring points, i.e, yellow points are in

high-density regions relative to dark blue points. Red points are meQTL influencing
CpGs in published age prediction models. (D–F) show the influence of genotype on
baseline methylation level for the meQTL highlighted with a diamond from the top
row, examples ofmeQTL that are invariant in Europeans but segregate in theAfrican
population.

Table 1 | Mean absolute prediction error for the non-heritable and heritable epigenetic prediction models

Heritable predictors error in years (SD) Non-heritable predictors error in years (SD) P-value of difference

African test samples 4.62 (.56) 4.25 (.56) 4.22e-06

European samples 5.87 (1.49) 5.03 (1.02) 6.29e-06

Hispanic/Latino samples 6.62 (1.17) 6.24 (1.14) 0.02

African-American samples 6.01 (1.23) 6.11 (1.78) 0.62

Japanese samples 5.94 (1.34) 4.53 (1.41) 1.09e-11

Mean absolute prediction error across 100 differentmodels, each randomized for training and test splits. Standard deviations of the error distributions are listed in parentheses. Age predictors were trained
on thecombinedAfrican trainingsamplesusing leave-one-out cross-validationandapplied to held-out test samples.Weapplied thesemodels to saliva-deriveddata from individualsof European,Hispanic/
Latino, African-American, and Japanese ancestry. Non-heritable predictors were trained on the set of CpGs with no identifiable cis-meQTL associations and insignificant cis-heritablity. The heritable
predictors were created from the complement set of CpGs, found to be either influenced by cis-meQTL or significantly cis-heritable. P-values are the results of a two-sided T-test comparing the non-
heritable and heritable prediction error distributions. Mean raw prediction errors across all 100 models are listed in Supplementary Table 5.
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differences in implementation; in our prior work, we applied the Horvath
algorithm to quality control filtered DNAmethylation values that had been
pre-normalized and imputed70, whereas here it was applied to raw and
unfiltered data according to the online platform standards (see
dnamage.clockfoundation.org90). This highlights an additional issue
impacting transferability, namely a lack of agreed-upon best practices for
DNA methylation data processing and quality control.

Unlike previous work, we also did not find any significant differences
among populations for any of the epigenetic age acceleration metrics
derived fromtheHorvathandHannumclocks19,31–34 (SupplementaryFig. 6).
It has been suggested that apparent among-population variations in

epigenetic age acceleration could indicate, or help explain, real differences in
the average health and/or longevity of different human groups19,24,31–34.
However, contradictory results across clocks and across studies, along with
decreasing chronological age prediction accuracy in genetically diverged
samples, suggest underlying issues in clock transferability19,31–33,41–43,91. Since
most epigenetic clocks have been trained primarily on European-ancestry
individuals living in industrialized societies, we instead suggest that these
discrepancies might be partially explained by differential transferability
across populations.

Although we did not have the health and mortality data required to
rigorously evaluate the relationship between epigenetic age acceleration and

Fig. 6 | Performance of epigenetic clocks trained on heritable CpG sites versus
non-heritableCpG sites. (A) and (B) are each based on a singlemodel that exhibited
the closest to the mean accuracy amongst the heritable models (A) or amongst the
non-heritable models (B) in the African test samples (n = 44). (C) depicts the dis-
tributions of the mean absolute error from all 100 heritable and non-heritable
models as applied to the African test subset (n = 44), Hispanic/Latino (n = 69),
European (n = 130), African-American (n = 64), and Japanese (n = 19) cohorts.
Boxplots depict the medians of the distributions and the 1.5× interquartile ranges.

Models based on CpG predictors that are not significantly impacted by cis-genetic
variation exhibit lower absolute error and less bias when applied to our test samples
and to out-of-cohort samples than models based on CpG sites that are significantly
heritable, except for when applied to the African-American samples. Table 1 shows
the mean absolute values and standard deviations of each of the distributions in
panel C and exact p-values of the two-sided T-tests. * indicates a p-value of <0.05,
** <0.01, and *** <0.001.
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health outcomes in the Himba, ‡Khomani San, and Baka, our results
demonstrate that poor transferability across ancestries should be considered
as a possible explanation for among-population differences. For example,
we found that PhenoAge and GrimAge2 exhibited qualitatively different
patterns in our among-population comparisons, even though both of these
epigenetic clocks were designed to capture signatures of age-associated
morbidity and mortality (Fig. 1). Although these clocks were designed to

capture slightly different aspects of the aging phenotype, we would not
expect these kinds of inconsistencies if Himba individuals are truly aging
faster (or slower) on an epigenetic level compared to European-ancestry
individuals.

Furthermore, we find that common genetic variation is a significant
factor affecting age association and epigenetic clock performance. We
recover hundreds of age associations after accounting for meQTL genotype

Fig. 7 | Relationship between epigenetic aging
score (EAS) and aging metrics. Scatterplots show
the relationship between the genotype-based epi-
genetic aging score (EAS) and various metrics of
epigenetic age acceleration for the Himba, ≠Kho-
mani San, and Baka. Each EASmodel was built from
the respective population’s epigenome-wide asso-
ciation study and baseline meQTL scan results.
Individuals’ EAS values were plotted against
A chronological age itself, B ‘Intrinsic Epigenetic
AgeAcceleration’ based on theHorvathmulti-tissue
age predictor78, C ‘Extrinsic Epigenetic Age Accel-
eration’ based on the Hannum predictor78,
D epigenetic age acceleration based on PhenoAge19,
E epigenetic age acceleration based on GrimAge20,
adjusted for predicted age, and FDNAmethylation-
based telomere length69, adjusted for true age. Only
samples predicted to be saliva or blood from the
online platform were used: Himba (n = 49), ‡Kho-
mani San (n = 46), Baka (n = 35). Pearson correla-
tions and unadjusted p-values for the significance of
the correlation are shown in the bottom right of
each panel.
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and find that all of the published epigenetic clocks include CpG predictors
that are impacted by cis-genetic variation. Furthermore, a substantial frac-
tion of this variation is rare or absent in European-ancestry populations.
Populations that experienced the out-of-Africa migration bottleneck carry
only a subset of the genetic variation that exists in African populations92;
therefore, we expect that our analyses capture a majority of the meQTL
variation that exists in the European, Hispanic/Latino, and Japanese
ancestry cohorts. In training our own epigenetic clocks, we show that
excluding CpG sites with detectable cis-heritability improves prediction
accuracy and reduces bias when applied to these out-of-Africa ancestry
populations relative to clocks that only include heritable CpG predictors
(Table 1, Fig. 6). However, we found no difference in prediction accuracy
between the heritable and non-heritable predictors when applied to the
African-American sample. This suggests that our approach still does not
adequately account for the full range of meQTL diversity that segregates in
this population and/or that recent admixture introduces additional chal-
lenges. Therefore, future work should continue to expand the diversity of
training andvalidation samples acrossmultiple tissue typeswith a particular
focus on African-ancestry and recently admixed populations.

Until we have a better understanding of the genetic architecture of
DNA methylation variation across diverse human populations, training
predictors on minimally heritable CpG sites is a straightforward and
effective approach to improving transferability. This is particularly true for
forensic applications, where generating an accurate estimate of chron-
ological age regardless of health status is the primary goal. However, given
the remarkably strong correlation of meQTL effect sizes across genetically
diverged populations (Fig. 3A–C), future epigenetic clocks could see even
greater improvements by explicitly accounting for individual genetic var-
iation. Therefore, while environmental differences could still drive variation
in DNA methylation, and thus prediction error, across cohorts, we show
that heritable factors play a significant role in transferability across cohorts.

Although we refer to the difference between individual chronological
age and predicted age as ‘prediction error’ throughout this paper, it must be
noted that these deviations are not necessarily true errors; for some epige-
netic clocks, these deviations do appear to reflect meaningful variation in
human health, morbidity, and/or mortality within specific populations82–84.
However, as we have outlined above, it is not clear to what degree among-
population differences inmean estimates are indicative of genuine variation
in the rate at which different human populations age, versus a simple lack of
transferability. Answering this question will require a complete under-
standing of the connections between various genetic, environmental, and
lifestyle factors and CpG methylation, as well as their interactions and
downstream effects on the aging phenotype. Our work here focuses on the
genetic factors, whose effects on CpGmethylation we are able to dissect by
jointly analyzing DNA methylation and genotype data. Additionally, our
multi-population study design enables us to characterize the extent towhich
the genetic architecture of age-associated CpGmethylation is shared across
diverse genetic backgrounds and environments (Fig. 3). As our phenotypic
data was limited to chronological age, we demonstrate that accounting for
heritableCpG sites can improve chronological age prediction butwe cannot
directly assess improvement to biological age/morbidity predictors. How-
ever, based on our results, we would expect biological age/morbidity pre-
dictors to likewise benefit from excluding heritable CpG sites.

We were also able to investigate the potential impact of genetic var-
iationon the agingphenotypebydevelopinganepigenetic aging score (EAS)
that reflects the cumulative effect of meQTL variants that influence age-
associated CpGs. We find suggestive evidence that our EAS is associated
with older chronological age and with epigenetic age acceleration in these
populations (Fig. 7). If genetic factors influence lifespan and healthspan, we
might expect that older individuals will have lower EAS (i.e., a lower burden
of epigenetic age-increasing variants) while younger individuals will exhibit
a wider range of EAS values. In our data, we find that this patternmanifests
as a slight negative correlation between EAS and chronological age. Fur-
thermore, we find that EAS is also correlated with various estimates of
epigenetic age acceleration, despite the fact that these metrics were not

trained onAfrican populations and thus are likely underpowered. Although
not always significant, the consistency of these associations in the expected
direction is nevertheless compelling. These results also corroborate previous
work that has found that both healthspan and lifespan are heritable, poly-
genic traits12,13,56,81,93. In his 2013 paper, Horvath noted 21 genes that carried
common variants associated with increased epigenetic age in his multi-
tissue clock. Interestingly, six of these genes (FAM123C, LEPR, CHD7,
CTNND2,TMEM132D, andMACF1) were proximal to aCpG site included
in at least one of our population-specific EASmodels. These results suggest
that our EAS models are picking up on real signals of a genetic predis-
position to accelerated biological aging within these African populations
that warrant further investigation. Within-population heterogeneity in
environment and lifestyle factors such as diet94 and infectious disease
burden95,96 would reduce our power to detect the influence of genetic
sequence variation on methylation. However, despite these challenges and
our low sample sizes, we believe our study is particularly well-suited to
identify these signals. Relative to industrialized populations, among-
individual variation in socioeconomic status, diet, and other lifestyle fac-
tors is relatively low within our cohorts, as samples were collected within
small communities by walking from house to house (see “Methods”
section).

The extent to which the pace of epigenetic aging is determined and
modulated by heritable versus non-heritable factors is still very much an
open question, with important implications for the problem of transfer-
ability. These issues must be carefully considered as epigenetic clocks are
being more frequently applied in contexts where these genetic and envir-
onmental factors are often confounded. For example, the relatively new
subfield of ‘social epigenomics’ seeks to understandhow socioeconomic and
environmental factors influence DNA methylation and drive health dis-
parities in cosmopolitan populations24. Differences in epigenetic age accel-
eration among racial and/or ethnic groups are typically interpreted as
arising from systemic differences in socioeconomic status, etc.However, it is
possible that poor model transferability partially accounts for these obser-
vations. This alternative explanationdoesnotminimize the growing bodyof
evidence that broadly demonstrates that various social determinants of
health, such as psychosocial stress97, diet94, and smoking behavior98, influ-
ence DNAmethylation. Rather, we caution that genetic ancestry should be
more carefully considered in studies of epigenetic aging and its con-
sequences for human health, as it is often confounded with underserved
minority status, particularly in the Global North.

Methods
Sample collection
Saliva samples from 3 different African populations were collected between
2006 and 2016 using Oragene DNA self-collection kits. 51 Himba indivi-
duals (aged 4–89, median age 46; 28 females and 23 males), 52 ≠Khomani
San individuals (aged 21–91,median age 62.5; 33 females and19males), and
35 Baka individuals (aged 5–59, median age 30; 19 females and 16 males)
had pairedDNAmethylation and genotype data that passed quality control.
The Baka dataset comprises nine trios and nine unrelated individuals. The
data from the ≠Khomani San and Baka individuals have been previously
analyzed70.

Population descriptions
The three populations included here occupy very different geographic
locales and have varied subsistence strategies. The Himba are a Bantu-
speaking agropastoralist population living on the northern border of
Namibia.Their environment is a semi-aridmopanewoodlandwith seasonal
creeks and a perennial river to the north. About 30,000-40,00099 people
belong to the Himba ethnic group, which has maintained traditional dress,
subsistence, and domicile to a greater extent than the closely relatedHerero.
Today, their diet consistsmainly ofmeat and sourmilk from their cattle and
goats in combinationwithmaize,melon, andothervegetablesgrown in their
gardens. While social status is marked by the size of their herds, dietary
diversity varies little among families. Drought periodically affects northern
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Namibia, resulting in cattle loss99; in such instances, the Himba typically
supplementwith store-bought items and reportmoderate food insecurity100.

The ≠Khomani San are a formerly hunter-gatherer population in the
southernKalahari Desert.While some elders grew up foraging,most people
in the study are now wage laborers on sheep farms, receive government
subsistence, or rely on remittances from relatives in larger towns. The
population is primarily sedentary in very small towns or farms in the region.
Due to their limited income, diet is a mix of purchased goods (flour,
potatoes,maize, cabbage, etc.) for stews or baked bread, andmeat from local
farms (generally sheep/goat, but also donkey and cattle). Gathering ‘wild
food’ continues to supplement their diet. Many families report nutritional
stress101 (personal communication, BMH).

The Baka are a foraging-horticulturalist population from southeastern
Cameroon and Gabon, living in the central African rainforest. Due to their
economic relationships with Bantu-speaking farmers and encroachment
into the rainforest, the Baka have been increasingly residing in sedentary
villageswithin forest clearings. Starchy foods such as cassava,wild yams, and
plantains are staples to which leafy greens and hunted meat and fish are
added. Wild herbs, mushrooms, and nuts also require frequent effort to
obtain from nearby forests102. Many families are resource-limited, having
only one main meal a day.

DNAmethylation microarray quality control and filtering
DNA was bisulfite converted, whole-genome amplified, fragmented, and
hybridized to the Illumina Infinium HumanMethylation450 (>485,000
CpG sites) BeadChip array for the Baka and ‡Khomani San samples and the
EPICArray (>845,000CpGsites) for theHimba samples.DNAmethylation
array data was generated in 4 batches, with both the ‡Khomani San and
Himba samples separated across two batches (SupplementaryTable 6).One
‡Khomani San individual was typed in both batches, and two Baka indi-
viduals were typed twice in the same batch. The overall intra-class corre-
lations between DNAmethylation values for these 3 sets of replicates were
0.9985, 0.9991, and 0.9989, respectively. One Himba individual, sampled
three years apart,was typed across the twoHimbabatches.Theoverall intra-
class correlation between methylation values from this individual was
0.9974, lower than for a purely technical replicate, as expected. Only the
earlier sample from this individual was used in the EWAS and meQTL
analyses. One Baka individual was flagged for having abnormally low
bisulfite controls and removed from analyses.

We removedDNAmethylationprobeswith a detectionp-value > 0.01 in
greater than 5%of samples, aswell as any probes that have been reported to be
cross-reactive, map to multiple regions, or to the sex chromosomes103,104

(SupplementaryTable7).Anyremainingvalueswithdetectionp-values > 0.01
were set toNA.We also removedCpG sites that were likely to be impacted by
SNPs in ornear the probe sequence in a population-specificmanner using our
previously published software, probeSNPffer (https://github.com/
gillianmeeks/probeSNPffer)105,106. Specifically, we retrieved the hg19 geno-
mic coordinate of the target cytosine for each DNAmethylation array probe
and searched the full 50 base pair probe region, the next base extension (for
type 1 probes), and the extension base (for type 2 probes) for overlap with
SNPs segregatingat>5%frequency inagivenpopulation105. SNPswithinarray
probes can lead to reduced probe hybridization efficiency and unreliable
methylationsignal103,105,107.Anadditional27,242, 9254, and61,662probeswere
pruned from the Baka, merged ‡Khomani San, and merged Himba DNA
methylation datasets, respectively, from this step.

After these filtering steps, we were left with 713,988 CpG sites in the
Himba dataset, 418,629 sites in the ‡Khomani San dataset, and 400,893 sites
in the Baka dataset. There was an overlap of 355,103 sites across all three
populations that we used for the combined analyses. DNA methylation
values were background and color corrected, and technical differences
between type 1 and type 2 probes were corrected by performing BMIQ
normalization using the wateRmelon108 and minfi109 R packages. All ana-
lyses were performed using continuous DNA methylation beta values for
each CpG site, which range from 0 (indicating that the site is completely
unmethylated) to 1 (completely methylated).

Genotype data quality control and filtering
Genotype data was generated using multiple arrays for the ‡Khomani San
andHimba samples,while the 35Baka individualswere all genotypedon the
Illumina OmniOne array. All genotype data were oriented to match the
1000 genomes Phase 3 GRCh37 reference, filtered to exclude SNPs with a
genotype missing rate >5%, minor allele frequency of <1%, and Hardy-
Weinberg deviation p-value < 0.0001.We removed all indels and A/T or C/
G transversion variants. Sample sizes and pre-imputation variant counts are
listed in Supplementary Table 8. Principal components analysis of the three
populations’ genotype data is shown in Supplementary Fig. 10.

Each genotype array datasetwas phasedusing SHAPEITv2.r790110 and
imputed using the Positional Burrows-Wheeler Transformation (PWB)111

to the African Genomics Resources Panel (89,838,088 autosomal variants,
4956 samples) via the Sanger Imputation Service57.We assessed imputation
accuracy in our samples by calculating imputed genotype concordancewith
sequencing data. For the ‡Khomani San, we compared imputed genotypes
with whole-exome sequence data for 37 individuals. The overall con-
cordance with the ‡Khomani San exome variants was 95.7%–97.7% across
the genotype arrays for variants of any impute quality INFO score (Sup-
plementary Fig. 11D). For the Himba, we compared genotypes imputed
from MEGAex array data with genotype calls uniquely typed on the
H3Africa array data for 3 Himba individuals genotyped on both platforms.
The average concordance of imputed H3Africa SNPs was 98% for the 3
Himba individuals typed on both H3Africa and MEGAex (Supplementary
Fig. 12D). We also stratified concordance by imputed quality INFO score,
and observed 99% concordance across all genotype arrays in the ‡Khomani
San andHimba at a >0.95 INFO score (Supplementary Fig. 11D, 12D). This
observation informed our choice to only retain imputed variants with >0.95
INFO score for subsequent analyses. Imputed data fromOmniExpress and
MEGAex arrays performed slightly better on concordance metrics for all
INFO score bins than the 550K array (Supplementary Fig. 11A-D), most
likely due to denser genotyping, so genotype data from these arrays were
used for the 17 ‡Khomani San individuals typed on multiple arrays. After
filtering and merging across genotype arrays, we retained 66,484,843 high-
qualityautosomal variants for the‡Khomani San, 78,738,543 for theHimba,
and 75,739,815 for the Baka.

Epigenome-wide association studies (EWAS)
We used EMMAX112 with the dosage option to test for the association
between age and methylation level separately in each population,
accounting for population-specific, scaled covariates and a Balding-Nichols
kinship matrix (Eqs. 1–3).

DNA methylation array data are known to exhibit significant batch
effects; that is, samples on one run vary systematically from samples on
another due to technical artifacts.We controlled forDNAmethylation array
batch effects by including the first 20 PCs of control probe intensities113 as
covariates in the EWAS for the Himba (Eq. 1). Regressing out these control
probe PCs eliminates batch effects in the first two methylation PCs (Sup-
plementaryFig. 13C,D).Wedidnothave access to the raw intensities for the
Baka and ‡Khomani San methylation datasets, so we controlled for tech-
nical artifacts by including batch number as a covariate in ‡Khomani San
where samples were split across batches (Supplementary Fig. 13A, B). To
control for technical artifacts present within a batch, we included the
combinationof thefirst 5DNAmethylationPCs thatwe foundbest reduced
genomic inflation. We did not include all of the first 5 methylation PCs as
covariates to mitigate power loss, as up to one third of the methylome has
been found to show association with age1.

We included sex and the first 5 genetic PCs as covariates in all models
(Eqs. 1–3).We computed the latter using LD-pruned (PLINK1.972 --indep-
pairwise 50 5 0.3) variants above 5% frequency within each population.
There was no evidence of clustering based on genotype array in the
‡Khomani San (Supplementary Fig. 10A). We estimated cell-type propor-
tions using theRpackageEpiDish67, leveragingDNAmethylationdata from
a reference panel of 12 different blood cell types, epithelial cells, and
fibroblast cells. The proportions estimated by this method correspond
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closely to previous estimates of saliva cell composition68 (Supplementary
Fig. 14). As neutrophils and epithelial cells together account for nearly 100%
of the cells in our saliva samples, we included just the neutrophil proportion
as an additional covariate in our models. Cell-type proportion estimates for
the replicate samples were highly similar (Supplementary Table 9). We
compared our reference-based deconvolution approach to reference-free
estimates of cell-type proportions using the TOAST114 R package. Under a
k = 2 clustermodel, the correlation with the reference-based neutrophil and
epithelial cell proportion estimates was 0.98.

Himba Age ¼ Intercept þ βMethylation % þ βCtrl Probe PCs1�20

þ βGenetic PCs1�5 þ βNeutrophil % þ βSex þ βBN kinship matrix

ð1Þ

zKhomani San Age ¼ Intercept þ βMethylation % þ βBatch

þ βMethylation PCs1;3 þ βGenetic PCs1�5

þ βNeutrophil % þ βSex þ βBN kinship matrix

ð2Þ

Baka Age ¼ Intercept þ βMethylation % þ βMethylation PCs2;3

þ βGenetic PCs1�5 þ βNeutrophil % þ βSex þ βBN kinship matrix

ð3Þ

We used the metagen115 R software package to conduct a fixed-effect
meta-analysis of our EWAS results from all three populations. Significance
was determined at a Bonferroni-corrected p-value of 0.05, correcting for the
number of overlapping CpGs across the three populations. We set the
Hartung and Knapp adjustment to false and the between-study variance
method to REML.

Baseline cis-meQTL scan
We used EMMAX112 with DNA methylation value as the dependent vari-
able to identify cis-variants that are significantly associated with DNA
methylation levels at each CpG site. SNPs with a minor allele count of less
than 2were removed to leave 2,432,803 for the‡Khomani San, 6,594,680 for
the Himba, and 4,944,508 for the Baka. We performed within-population
cis-meQTL scans using LD-pruned genotype datasets (generated using the
PLINK1.972 option --indep-pairwise 50 5 0.5) by testing each SNP within a
200 kb window (100 kb upstream and downstream) of the target CpG for
association with DNA methylation level. The same population-specific
scaled covariates as in the EWAS scan were used with age as an additional
covariate (Eqs. 4–6). We determined significance at a p-value of 0.05 cor-
rected for the number of SNPs tested at each CpG.

CpGi;Himba ¼ Intercept þ βcis�genotype ð0=1=2Þ þ βCtrl Probe PCs1�20

þ βGenetic PCs1�5 þ βNeutrophil % þ βSex þ βBN kinship matrix þ βAge

ð4Þ

CpGi; zKhomani San ¼ Intercept þ βcis�genotype ð0=1=2Þ þ βBatch

þ βMethylation PCs1;3 þ βGenetic PCs1�5 þ βNeutrophil %

þ βSex þ βBN kinship matrix þ βAge

ð5Þ

CpGi;Baka ¼ Intercept þ βcis�genotype ð0=1=2Þ þ βMethylation PCs2;3

þ βGenetic PCs1�5 þ βNeutrophil % þ βSex þ βBN kinship matrix þ βAge

ð6Þ

Heritability of CpG methylation
We estimated cis-heritability of DNA methylation at each CpG site using
GCTA116 within FUSION71 and default parameters (--reml --reml-no-
constrain --reml-lrt 1).We tested a 1Mbwindow (i.e., 500 kb upstream and
downstream) around each CpG site. We used the same genetic datasets as

used in the baseline meQTL scan prior to the LD pruning step. The same
covariates were used as in the baseline meQTL scans (Eqs. 4–6).

FUSION cis-meQTL scan
We modified functions from the FUSION71 software package, originally
designed to uncover the cis-genetic architecture of gene expression, to test
elastic net, LASSO72, SuSie (sum of single-effect)73, and the best single
meQTL regression models to explain methylation levels at each CpG site.
The former 3 regression models allow for multiple SNP effects to jointly
influence methylation rather than testing the effect of each SNP indepen-
dently, as in our baseline scan. Only CpGs with significant (p-value < 0.05)
cis-heritabilty were modeled using the 4 regression models. The FUSION
framework conducts 5-fold cross-validation analyses to select the regression
model that yields the highest R-squared in explaining cis-genetic variation’s
effect on DNA methylation and stores the effect sizes (i.e., weights) asso-
ciated with each variant under each model.

MeQTL-adjusted EWAS
We re-ran our EWAS (Eqs. 1–3), this time testing for age associations with
the residual values after regressing out the top meQTL genotypes from
respective CpG’s methylation values. For instances of multiple significant
meQTL influences a CpG, we choose the variant with the lowest p-value.
This was done for each CpG site with a significant meQTL association. We
used the same covariates as in the original EWAS (Eqs. 1–3).

Testing published epigenetic clocks
We tested all 10 published age predictors available through the Clock
Foundationonlineportal at dnamage.clockfoundation.org90.TheHorvath12,
Hannum13, skin and blood58, and Zhang elastic net59 clocks are all chron-
ological age predictors built using penalized linear regression. The
PhenoAge19, GrimAge20, GrimAge221, and Fitage22 clocks are built on CpGs
associatedwith surrogatemeasures of biological age, capturing variables that
predict lifespan, healthspan, and mortality risk. GrimAge and GrimAge2
models incorporate chronological age within their surrogate measure and
can be constructed using actual chronological age (GrimAge on true age) or
using estimates of chronological age from the skin and blood clock
predictor58(GrimAge on predicted age). See eTable 1 in Krieger et al. 30 for
detaileddescriptionsof eachpredictor.TheHorvath12multi-tissue clockwas
trained on data from 51 different tissue types, specifically designed to be a
pan-tissue predictor. The skin and blood58 clockwas trained ondata derived
from fibroblasts, keratinocytes, buccal cells, endothelial cells, lympho-
blastoid cells, skin, blood, and saliva samples. The Zhang elastic net59 clock
was trained on data derived primarily from whole blood samples, with 2%
fromsaliva-deriveddata. The other predictorswere trained onwhole blood-
derived samples.

Each model’s age predictions are a weighted sum of an individual’s
DNA methylation values at the predictor CpG sites, and are thus very
sensitive to missing data. Therefore, in order to fairly compare predictions
across populations, and in accordance with recommendations published
with the online tool, we uploaded raw, unfiltered beta values for each
individual. Additionally, we restricted our dataset to CpG sites that were
common to all three African populations and the European and Hispanic/
Latino datasets. In addition to estimates of epigenetic age from the different
prediction algorithms, theClockFoundation online portal90 performs a host
of quality control analyses based on the input DNA methylation values,
including tissue type prediction using an unpublished algorithm. We
compared EpiDish67estimated cell-type proportions across the predicted
tissue types and found samples predicted tobe saliva, bloodPBMC,orwhole
blood and found cell-type proportions were essentially indistinguishable in
our dataset (Supplementary Fig. 14). We conservatively excluded samples
predicted to originate from tissue types other than saliva, blood PBMC, or
whole blood, resulting in the following final sample sizes for these clock
validation analyses: Himba (n = 49; median age 47, age range 4–89; 28
females and 21 males), ‡Khomani San (n = 46; median age 62, age range
21–87; 31 females and 15 males), Baka (n = 35; median age 30, age range
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5–59; 19 females and16males),Hispanic/Latino (n = 69;median age 70, age
range 36–88; 25 females and 44males), European (n = 130; median age 67,
age range 40–88; 59 females and71males).We adjustedprediction errors by
regressing out chronological age fromerror values before evaluating among-
population differences. This was necessary to avoid confounding based on
the different age distributionswithin our cohorts, as prediction accuracy can
vary systematically by age for some epigenetic clocks60. By taking these steps,
we ensured that differences in prediction error are not due to sampling
design, tissue type, or other technical issues. We identified significant
among-population differences in the distribution of age-adjustedprediction
errors by ANOVA, followed by a Tukey test to identify significant pairwise
differences.

We also assessed the differences in epigenetic age acceleration (EAA)
metrics across cohorts (Supplementary Fig. 6). The Horvath residual,
Hannum residual, GrimAge, and PhenoAge acceleration metrics are cal-
culated by adjusting the epigenetic age estimated by each predictor for
chronological age. Intrinsic epigenetic aging acceleration (EAA) measures
the component of EAA that is not influenced by changes in white blood cell
count with age (i.e., it is the residual of theHorvath estimate after regressing
out both chronological age andDNAmethylation-based estimates of blood
cell proportions). Extrinsic EAA instead captures both this intrinsic com-
ponent andage-related changes inwhite blood cell compositionbyusing the
residuals of an enhanced version of the Hannum-based age estimate after
regressing out chronological age, but not estimates of blood cell
proportions78. Positive values of thesemeasures indicate that an individual’s
predicted age is higher than their actual chronological age. The DNA
methylation-based telomere length acceleration estimate is generated by
regressing out chronological age fromDNAmethylation-based estimates of
telomere length69. Positive values indicate that an individual is estimated to
have longer than expected telomeres for their age117. Telomeres tend to get
shorter with age and in association with increased risk of age-related
diseases118,119.

Constructing chronological age predictors
We developed chronological age prediction models using elastic net
regression. We selected predictors using the cv.glmnet function in R,
employing leave-one-out cross-validation on the training dataset. We
conducted 100 different splits of our dataset into training and test sets to
construct the heritable and non-heritable prediction models. Each
training dataset was created from randomly sampling 70% of the
‡Khomani San and Himba samples and 63% of the Baka samples. For the
trios contained in the Baka dataset, children were never included with
their parent(s) for training. We trained our models on only the 329,821
CpG sites that were common across all three African cohorts, as well as
the 3 saliva-derived validation datasets (European/Hispanic Latino
GSE78874 from the established clocks analyses, African-American
GSE61653, and Japanese GSE214901) to avoid CpG missingness dur-
ing validation. The African-American dataset contains 106 females and
22 males, with an age range of 20–74 and a median age of 41.5. The
Japanese dataset contains 9 females and 10 males, with an age range of
13–73 and a median age of 61. The heritable models were built by
training on 116,132 possible predictor CpGs found to be significantly
heritable (p < 0.05) or influenced by meQTL in our baseline scans of any
of the three African cohorts. Our non-heritable models were built by
training on 213,689 possible predictor CpGs not found to be significantly
heritable and not influenced by meQTL in our baseline scans. We con-
ducted a grid search to optimize the alpha parameter for the elastic net
regression model. Alpha values ranged from 0 to 1 in increments of 0.05.
For each alpha, we used leave-one-out cross-validation on the training
data to construct the model and selected the lambda value that mini-
mized the mean squared error (MSE). The best-performing model was
then identified based on the alpha value that resulted in the lowest MSE
on the held-out test dataset. We used transformed chronological ages
following Horvath’s method12 to account for the logarithmic relationship
observed at many sites between methylation and age in children and

young adults. We then applied each of our 100 heritable and 100 non-
heritable epigenetic age prediction models to the validation cohorts of
European, Hispanic/Latino, African-American, and Japanese ancestry
after first normalizing these data using the wateRmelon108 package’s
BMIQ function.

Epigenetic aging score (EAS) models
We constructed an EAS for each African population by using the baseline
meQTL results to identify SNPs that have a strong influence on DNA
methylation levels at a nearby CpG site, retaining only the most significant
SNP per CpG site. We intersected this list with each population’s meQTL-
regressed EWASresults to identifyCpG sites that are both influencedby cis-
meQTL and age-associated, using a relaxed significance threshold of 10−3

for the latter.We extracted the effect of each SNP allele onCpGmethylation
and CpG methylation on age to construct the EAS, which is effectively a
polygenic score representing the total burden of epigenetic age-increasing
genetic variants on an individual’s genome, i (Eq. 7, Supplementary Fig. 15).
The effect of each SNP j on age is given by its effect on DNAmethylation at
the corresponding CpG site, weighted by the effect of DNA methylation
level at that CpG site on age. This weighting ensures that the direction of the
SNP-on-age effect is consistent across loci, which are then summed to yield
an EAS value.

EAS valuei ¼
XN

j

dosagei;j × βj on CpG methylation × βCpG methylation on age ð7Þ

Statistics and Reproducibility
Differences among groups in prediction accuracy were tested via
ANOVA with a Tukey adjustment. Differences in prediction accuracy
between heritable and non-heritable predictors were tested via a two-
sided T-test. Correlations were assessed by calculating Pearson’s corre-
lation coefficient using R’s cor.test() function using default parameters.
Sample sizes for EWAS and meQTL analyses were: Himba (n = 51),
‡Khomani San (n = 52), and Baka (n = 35). Sample sizes for age pre-
diction analyses were limited to those computationally predicted to be
from saliva or blood tissue: Himba (n = 49), ‡Khomani San (n = 46),
Baka (n = 35), Hispanic/Latino (n = 69), and European (n = 130). Sample
sizes for the age predictor transferability analyses were the Himba
(n = 49), ‡Khomani San (n = 46), Baka (n = 35), Hispanic/Latino
(n = 69), and European (n = 130) predicted to be derived from saliva or
blood tissues, as well as the African-American (n = 64), and Japanese
(n = 19) saliva-derived samples.

Ethics and Inclusion
Himba community leaders were actively involved in discussions
regarding what genetic data could be used for, who would have access to
it, and whether there was a for-profit element involved (there was not).
Individual informed consent, and for minors, parental assent, was
obtained orally from all participants, as most adults in the population
were not literate. A record of the Himba oral consent included the
participant's name and a local witness (our translator) who was literate
and signed for each participant. Oral consent was approved by UCLA
and Stony Brook. Permission to work in the community was obtained
from Chief Basekama Ngombe. Care was taken to protect participants’
privacy, for example, via a double-blind procedure for DNA collection120.
These data were collected as part of the longitudinal Kunene Rural
Health and Demography Project, which has been working in the com-
munity since 2010. The ≠Khomani San samples were collected in 2011,
2012, and 2015 with written informed consent, and the ≠Khomani San
participant ages were verified ethnographically on a case-by-case basis.
The ≠Khomani San community was sampled non-randomly using an
opportunistic sampling strategy. Prior to recruitment, several meetings
were held with the local community leaders and town hall meetings open
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to the whole community. A community member was assigned to the
research team as a guide. The research team walked house to house,
inviting people to participate. Various documents, such as birth certifi-
cates, wedding certificates, school records, and other forms of identifi-
cation (e.g., apartheid government identification documents), were cross-
referenced to identify any inconsistencies. Local major events, such as the
creation of the Kalahari National Park in 1931, were also used to verify
participants’ age. As the Baka communities from Cameroon are illiterate,
obtaining written informed consent would have been perceived as an
abuse of trust and was therefore avoided. Instead, verbal informed
consent was obtained from all adult volunteers and from both parents of
any volunteers under the age of 18. Before obtaining consent, the
objectives of the study and the sampling protocol were clearly explained
to all participants by the social anthropologist Dr Peguy Ndonko
(Bamenda University, Cameroon) and the physician and anthropologist,
Pr. Alain Froment (Institut de la Recherche et du Développement,
France), who had provided medical care to the Baka communities for
more than ten years at the time of sampling in 2011 and had built a long-
term relationship of trust with them.

Ethical approval
Informedconsentwas obtained for the collection and analysis of all samples.
Ethical approval for the collection of the Himba samples was granted by the
University of California, Los Angeles (IRB-10-000238), the State University
of New York, Stony Brook (IRB-636415-12), and was approved by the
NamibianMinistry ofHomeAffairs and theUniversity ofNamibiaOffice of
Academic Affairs and Research. Chief Basekama Ngombe provided per-
mission to work in the Himba community and local approval of the study.
Ethical approval for the collection ofDNAsamples from the≠Khomani San
was obtained from the Human Research Ethics Committee of Stellenbosch
University (N11/07/210), South Africa, and Stanford University (protocol
13829). Ethical approval for the collection of the Baka samples was obtained
from the institutional review boards of Institut Pasteur, Paris, France (RBM
2008-06 and 2011-54/IRB/3). All ethical regulations relevant to human
research participants were followed.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
The data from the Baka and ≠Khomani San used in this article have been
previously submitted to the European Genome-Phenome Archive (EGA)
(www.ebi.ac.uk/ega/home) and GEO. The SNP andmethylation array data
for the Baka can be found under the EGA accession numbers
EGAS00001001066 and EGAS00001002226. The SNP and methylation
array data for the ≠Khomani San can be found under the GEO superseries
GSE99091. SNP array and methylation array data for the Himba are
available via dbGaP, accession phs001995.v3.p1. The European and His-
panic/Latino methylation array dataset can be found under the GEO
superseries GSE7887434. The African-American methylation array dataset
can be found under the GEO superseries GSE6165377. The Japanese
methylation array dataset can be found under the GEO superseries
GSE21490176. The 1000 Genomes Phase 375 data can be accessed via http://
ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/. The source data used to create
the main text figures are available at https://doi.org/10.5281/zenodo.
15368482121.

Code availability
Code used to create the main text figures is available at https://doi.org/10.
5281/zenodo.15368482121 and also available at https://github.com/
gillianmeeks/CommsBio_2025_Meeks_etal.
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