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Supporting Methods 
 
Bottleneck Inference 

To determine the effective population size through time, we first identified a subset of 
unrelated individuals (n=120) and extracted them from the larger, already-quality-controlled (see 
Genetic Data) dataset. To identify a set of unrelated individuals, we used a custom python script 
that takes in PONDEROSA (1) and KING (2) output files and a user-specified maximum degree 
of relatedness (in our case, fifth degree). The script selects the individual who is unrelated to the 
highest number of other samples and adds him or her to the list, then identifies the next individual 
who is unrelated to the most other people and adds him or her to the list given that he or she is not 
already in the list or related to anyone already in the list. We used a custom pipeline similar to 
that in Gopalan et al (3) to run IBDNe. First, we phased our data with SHAPEIT and used 
GERMLINE with the --w_extend and the --haploid flags as well as using ‘bits’ 75 and err_hom 
set to 1 to identify IBD segments between all pairs of individuals (4). We then joined IBD 
segments that may have been split due to errors, defined by those that were separated by less than 
a 0.6 cM gap and that had no more than one discordant SNP. We also filtered out segments with 
low SNP density which were defined as 1Mb windows that fell in the fifth percentile for SNP 
count compared to all other 1Mb windows across the genome. Finally, we ran IBDNe (5) 
specifying a minimum centimorgan length of 4 cM and limited the number of generations before 
present to calculate Ne for to 100 (gmax 100). The output was graphed in R.  
 Our msprime simulations followed Gopalan et al (3) and specified a starting Ne of 4000, a 
final Ne in the present of 450, the generation at which to begin the bottleneck (60 or 6 ga), the 
number of haploid individuals to simulate (n=120), and a mutation rate of 1e-8. This changing Ne 
simulation uses a coalescent model with recombination (“Hudson” model) until 100 ga, then 
switches to a discrete Wright-Fisher model (3). Our starting and final Ne values were 4000 and 
450, respectively, to reflect the approximate starting and minimum Ne values inferred by IBDNe 
in the real data. We chose to simulate a bottleneck beginning 60 ga to reflect what was inferred 
from our actual data, as well as a more recent historical bottleneck beginning 6 ga to reflect our 
original hypothesis. We simulated 120 diploid individuals to match the number of Himba 
individuals used to infer the bottleneck in our actual data. Because simulated data do not have the 
same issues as actual data (i.e. they are perfectly phased and without genotype errors or missing 
SNPs), we did not need to use the same custom pipeline to optimize the parameters to infer IBD 
and run IBDNe. Instead, we processed the vcf output from the simulations, identified IBD using 
hap-ibd run with default parameters, and ran IBDNe with default parameters. 
To run HapLD, we merged 99 unrelated Zulu individuals with our 120 unrelated Himba samples. 
The Zulu individuals were taken from the AGR dataset, lifted over to hg38, converted to plink 
format, combined with the Himba, and then filtered for missingness (--geno 0.05) and MAF (--
maf 0.00047). We ran HapLD on both the Himba and the Zulu using the HapMap Phase 2 
GRCh37 genetic map and default parameters (6). 
 To run ASCEND, we first converted our merged Himba and Zulu dataset into eigenstrat 
format using CONVERTF. We ran ASCEND using default parameters on the Himba and 
specified the Zulu as the outgroup (7). 
 
 
Pedigrees 
 For pedigree reconstruction, we used PONDEROSA, an algorithm that infers pedigree 
relationships and is especially suited for populations with elevated IBD sharing (1) to identify all 
pedigree relationships in the data. To run PONDEROSA, we phased our Himba genotype data 
with SHAPEIT and identified IBD segments using GERMLINE with the --haploid and --
w_extend flags as well as specifying a minimum match length of 5 cM and a maximum of 3 
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mismatching SNPs per 100 SNP window (4). PONDEROSA also takes a KING (2) file as input 
to parent-offspring pairs as well as proportions of IBD1 and IBD2. We ran PONDEROSA 
specifying a maximum of a 30-year age gap for maternal half sibling relationships, a minimum of 
a 15-year age gap for parent-offspring relationships, and a minimum of a 30-year age gap for 
grandparent-grandchild relationships. We also specified that PONDEROSA should not use 
inferred sibling relationships from KING and used the default parameters of a maximum of 1 
discordant SNP and a 1 cM gap to stitch together IBD segments. The Kinship2 R package was 
used to plot the relationships identified by PONDEROSA. 
 To estimate the prevalence of close reticulations, we used Ped-Sim (8) to simulate many 
multi-relationship types: double cousins (co-co), double half-cousins (hco-hco), half-
sibling/cousins (hs-co), half-sibling/half-cousins (hs-hco), and half-sibling/second-cousins 
(hs_sco; e.g., paternal half-siblings whose mothers are first cousins) relationships as well as the 
standard relationships (all 2nd degree relatives, first cousins, and full-siblings). To do this, we 
used the crossover interference model and a sex-specific recombination map as in Cabellero et al 
(8). We seeded the model with Himba individuals and then ran KING on the output files to get 
the IBD1 and IBD2 values. It is important to note that Ped-Sim can output IBD1 and IBD2 values 
but this only uses the exact IBD segments that are simulated and would not account for 
background IBD sharing and would underestimate these IBD values. We also took simulated hs, 
hs-co, hs-hco, and half-sibling/second-cousins (hs_sco; e.g., paternal half-siblings whose mothers 
are first cousins) and used them to train a linear discriminant analysis classifier, which we used to 
classify real Himba half-siblings as either hs only, hs-co, hs-hco or hs-sco. 
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Supplemental Figures 
 
 

 
Figure S1. The ASCEND method predicts a founder event 16 generations ago in the Himba with 
an intensity (calculated as the duration of the bottleneck divided by twice the effective population 
size during the bottleneck) of 2.6%. 95% confidence intervals for these metrics are shown in 
brackets. The plot, automatically output by the ASCEND program, displays the correlation for 
allele sharing decay with increasing genetic distance (blue points) and the fit exponential model 
(red line). 
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Figure S2. To help validate the results of our inferred bottleneck, we simulated two populations 
experiencing a bottleneck beginning either 6 ga or 60 ga in msprime and used IBDNe to infer the 
simulated bottleneck. The black line and 95% confidence intervals (shown in gray) are inferred 
by IBDNe, and the red dashed lines represent the simulation parameters. 
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Figure S3. To understand how bottlenecking beginning at different time points produces different 
distributions of FROH and validate the timing of our inferred bottleneck, we compared FROH_1500 
distributions between simulated and actual individuals. The set of unrelated (n=120) Himba 
individuals are shown in blue and the simulated individuals with bottlenecks beginning at 6 and 
60 generations ago are shown in red and green, respectively. 
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Figure S4. FROH 1500 vs. FIS is plotted for all 681 Himba individuals (blue points) and is well 
correlated with a Pearson’s correlation coefficient value of 0.92. The dashed line indicates 
FROH=FIS and the red point represents the population average of FROH and FIS. On average, the 
population has a negative FIS near 0 (FIS = -0.0035) and FROH 1500 is greater than FIS for all 
individuals, suggesting that low Ne rather than recent consanguinity is responsible for elevated 
FROH. 
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Figure S5. The Himba are very well phased. We plotted the haplotype scores (Williams et al 
2020) for 2500 pairs of 2nd degree Himba relatives (blue points). The relationship between these 
scores (h1 and h2) describes IBD sharing across parental haplotypes. For one member of a 2nd 
degree relationship (half-sibling, niece/nephew, grandchild), all IBD segments should be on the 
same parental chromosome, resulting in a haplotype score of 1. For the second member in 
avuncular and grandparental relationships (i.e. the aunt/uncle or grandparent) the haplotype score 
will be less than 1 but no more than ½. For half-sibling pairs, both individuals should have 
haplotype scores of 1. Because at least one member of the 2nd degree relationship (h1 or h2) 
should have a haplotype score of 1, the points should fall on the top and right borders. If not well 
phased, shared IBD segments that should be inherited from a single parent will appear broken up 
between parental chromosomes. However, we do not see this in this plot where only 7% of these 
pairs have h1 and h2 values <0.90. 
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Figure S6. Many Himba relative pairs exhibit high levels of IBD2 sharing that indicate that they 
are related through both parents. There are several confirmed cases: double cousins (co-co), 
double half-cousins (hco-hco), half-siblings/half-cousins (hs-hco), half-siblings/cousins (hs-co), 
cousin/half-cousin (co-hco), and even double half-avuncular pairs (hav-hav). There are 22 of 
these relationships confirmed, but there are likely more as these can only be confirmed in families 
with four generations of genotyped individuals. We used Ped-Sim to simulate co-co, hco-hco, hs-
co, and hs-hco relationships as well as the standard relationships (all 2nd degree relatives, first 
cousins, and full-siblings). The 22 confirmed relationships (solid points) are plotted along with 
the simulated pairs (x’s). 
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Figure S7. Some half-siblings have close reticulations in their pedigrees. We took Ped-Sim 
simulated hs, hs-co, hs-hco, and half-sibling/second-cousins (hs_sco; e.g., paternal half-siblings 
whose mothers are first cousins) and used them to train a linear discriminant analysis classifier, 
which we used to classify real Himba half-siblings (solid points) as either hs only (gray), hs-co 
(green), hs-hco (orange), or hs-sco (gold). We classified 34 of the 835 half-siblings as being 
either hs-co (7) or hs-hco (11) or hs-sco (16). Simulated individuals are shown as x’s. 
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