Supplementary Materials

Only Death Will Separate Us: The Role of Extramarital Partnerships Among Himba Pastoralists

Brooke Scelza

Sean Prall

Additional Methodological Details

Details of relationship survey

Participants who completed the relationship history survey portion of the study answered the following questions about all current marital and non-marital partners. These questions included:

- Length of relationship response in years
- Time since last sexual activity response in days
- Frequency of contact with Likert scale response rarely/sometimes/often
- Frequency of phone contact with Likert scale response rarely/sometimes/often
- Whether the participant loves this partner yes/no response
- Whether the participant feels that the partner loves them yes/no response
- Whether the participant feels that the partner would help them if they needed help yes/no response
- Whether the participant believes that the partner in question has many additional informal partners yes/no response
- Whether the participant believes that they will still be with this partner in one year yes/no response

If the relationship in question was an informal one, then participants also answered

- Whether or not partner is also married yes/no response
- Whether or not the partner would make a good spouse yes/no response

Modeling details for relationship history variables

To predict relationships history questions with a binary outcome, the following model was used:

$$Outcome \sim Bernoulli(p)$$
$$Logit(p) = \alpha + \alpha_{ID} + \beta_{age} * Age + \beta_{Male} * Male + \beta_{I} * Male * Age$$

Similarly, to predict relationship history question regarding whether an informal partner is married, the following model was used:

$$Outcome \sim Bernoulli(p)$$
$$Logit(p) = \alpha + \alpha_{ID} + \beta_{age} * Age + \beta_{Male} * Male + \beta_{Married} * Married + \beta_{I} * Male * Age$$

To predict length of relationships, the following model was used, with participant age modeled using the spline function s() as part of the brms() package using default priors, defined as $\sum w_k A_k$ below:

 $\begin{aligned} & Log(Length+1) \sim Normal(\mu,\sigma) \\ & \mu = \alpha + \alpha_{ID} + \sum w_k A_k + Type * \beta_{Type} \\ & \sigma = \alpha + Type * \beta_{Type} + Age * \beta_{Age} \end{aligned}$

Additional Statistical Details

All analyses were run in R (R Core Team, 2020) using RStudio (RStudio Team, 2020). Multilevel models were fitted to RStan (Stan Development Team, 2019) using the brms package (Bürkner, 2017), and convergence assessed by examining \hat{r} values. All models used 5000 iterations, 2000 of which were warm-up, run on 3 chains. All models included regularizing priors for predictors, and variance parameters. Other packages packages used include *tidyverse* (Wickham, 2017), *cowplot* (Wilke, 2017), *broom* (Robinson & Hayes, 2019), *modelr* (Wickham, 2020), *tidybayes* (Kay, 2020), *janitor* (Firke, 2021), and *ggthemr*(Tobin, 2020).

Additional Plots

Figure S1 - Posterior prediction for relationship length A: Posterior prediction for relationship length by relationship type, B: Posterior prediction for relationship length by respondent age

Figure S2 - Posterior distribution of model coefficients for relationship length

Figure S3 - Posterior prediction for age by sex interaction on whether the informal partner is married

Figure S4 - Posterior distribution of coefficients in relationship history models

References

Bürkner, P.-C. (2017). Brms: An R Package for Bayesian Multilevel Models Using Stan. Journal of Statistical Software, 80(1), 1–28. https://doi.org/10.18637/jss.v080.i01

Firke, S. (2021). Janitor: Simple Tools for Examining and Cleaning Dirty Data.

Kay, M. (2020). Tidybayes: Tidy Data and Geoms for Bayesian Models.

R Core Team. (2020). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.

Robinson, D., & Hayes, A. (2019). Broom: Convert Statistical Analysis Objects into Tidy Tibbles.

RStudio Team. (2020). RStudio: Integrated Development Environment for R. Boston, MA: RStudio, PBC.

Stan Development Team. (2019). RStan: The R interface to Stan.

Tobin, C. (2020). Ggthemr: Themes for 'Ggplot2'.

Wickham, H. (2017). Tidyverse: Easily Install and Load the 'Tidyverse'.

Wickham, H. (2020). Modelr: Modelling Functions that Work with the Pipe.

Wilke, C. (2017). Couplot: Streamlined Plot Theme and Plot Annotations for 'Ggplot2'.