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Chapter 7
Immunity, Hormones, and Life History 
Trade-Offs

Michael P. Muehlenbein, Sean P. Prall, and Hidemi Nagao Peck

Abstract Immunity is an integral part of organismal life histories because it is 
crucial for maximizing evolutionary fitness, and because it is energetically expensive 
to develop, maintain, and activate. This chapter orients the reader to the roles of 
immunity in human life history trade-offs, and specifically the utility of sex 
hormones in mediating variation in immunity. Hormones are central mechanisms 
that contribute to the onset and timing of key life history events, fine-tune the 
optimal allocation of time and energy between competing functions, and in general 
modulate phenotypic development and variation. Here we describe the roles of 
testosterone, dehydroepiandrosterone, and estradiol in moderating immunocompetence 
from a life history perspective, illustrating how correlated changes in immunity and 
gonadal function reflect the manifold interactions between these two systems. The 
immunomodulatory actions of these hormones are complex and varied, and we 
attempt to provide explanations for this variation from the literature. Although our 
evidence comes from clinical medicine, our basic prediction is derived from life 
history theory: altering the hormonal milieu may result in differential susceptibility 
to both infectious and chronic diseases. Furthermore, the immunological costs 
associated with hormone supplementation are worthy of greater consideration by 
both clinical practitioners and evolutionary ecologists alike.

7.1  Trade-Offs and Hormones

Life history strategies are complex adaptations for survival and reproduction that 
require the coordinated evolution of somatic and reproductive developmental 
processes (Stearns 1992). A cornerstone of life history and evolutionary theory is the 
importance of phenotypic plasticity, or the ability of an organism to alter its morpho-
logical, physiological, and behavioral phenotype in response to environmental 
change. Since environments and selection pressures can change rapidly, it is seldom 
adaptive for an organism to maintain a rigid set of phenotypes (Schlichting and 
Pigliucci 1998). Plasticity in response to stochastic ecological stressors, like the 
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presence of pathogens or available mates, represents a suite of complex adaptations 
that are manifested in the form of reaction norms produced by natural and sexual 
selection, and constrained by trade-offs under conditions of resource restriction 
(Sinervo and Svensson 1998). Reaction norms consist of the range of phenotypes 
that can be produced by a given genotype through short-term changes (for example, 
acclimatization to high altitude), as well as long-term adaptations. Phenotypic plas-
ticity is limited through lineage-specific effects (i.e., the canalization of certain 
traits; phylogenetic constraints) as well as trade-offs. Assuming a limited supply of 
energy and time, organisms are required to allocate physiological resources between 
a number of competing functions, most notably reproduction, maintenance (i.e., sur-
vival), storage, work, and growth (Stearns 1989). Organisms will therefore be under 
selection to develop and maintain physiological systems that allow for the efficient 
distribution of resources between these functions. In a stochastic environment, those 
organisms that can most efficiently regulate the allocation of resources between 
competing traits will likely exhibit increased lifetime reproductive success.

Trade-offs involving reproduction are common, particularly in iteroparous (con-
tinually reproducing) organisms like humans that must balance investments between 
current and future reproductive events, as well as between survival and reproduc-
tion. This is to be expected given the central role of reproduction in life history 
evolution. Recent studies in reproductive ecology illustrate the flexibility of human 
reproduction in response to energetic conditions (Bribiescas 2001; Ellison 2003). 
Endocrinological mechanisms sensitive to environmental cues can facilitate modu-
lation of reproductive effort relative to other investments. Both from a macro- and 
a microevolutionary perspective, hormones are central mechanisms that contribute 
to the onset and timing of key life history events, the optimal allocation of time and 
energy between competing functions, and the general modulation of phenotypic 
development and variation (Muehlenbein and Bribiescas 2005; Bribiescas and 
Ellison 2008; Muehlenbein and Flinn 2011). This is particularly true for steroids, 
ancient lipid-soluble molecules derived from cholesterol and shared by all verte-
brates. Steroid hormones are involved in modulating behavior, metabolism, growth 
and development, reproduction, senescence, and immune functions, among others. 
Complex interaction and crosstalk between different steroid hormones (and other 
types of hormones) are therefore implicated in many aspects of human health.

It is inherently difficult to measure life history mechanisms and quantify trade- 
offs in humans, since we are unable to directly manipulate the system to produce 
genetically evolved response patterns that clearly produce phenotypic variation 
cued by specific environmental signals. But, as in most other organisms examined 
to date, the human neuroendocrine system is undoubtedly a central mediator of our 
phenotypic variation, including variation in life history traits (Finch and Rose 1995). 
For example, testosterone can facilitate male reproductive success by modifying 
behaviors (i.e., competition and sexual motivation) in addition to physical attributes 
(i.e., spermatogenesis, muscle anabolism, and fat catabolism). Musculoskeletal 
function can augment work capacity, intrasexual competition, intersexual coercion, 
and mate choice. However, high testosterone levels could also compromise 
survivorship by increasing energetic costs; such costs may explain the functional 
significance of the high variability in testosterone levels seen within men, and within 
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and between populations (Bribiescas 2001; see Chap. 9 in this volume). This prob-
lem would become exacerbated in resource-limited environments.

The regulatory role of testosterone in allocating energetic resources and male 
reproduction also extends to the immune system. Maintaining high testosterone lev-
els to bolster reproductive effort could reduce the amount of energy or nutrients 
available for energetically expensive immune responses. Individuals inhabiting 
high pathogen-risk environments may benefit from decreased testosterone levels to 
avoid immunosuppression and suspend energetically expensive anabolic functions 
(Muehlenbein 2008). Environmental conditions, including infection, during devel-
opment may ultimately play an important role in altering baseline testosterone (and 
other hormone) levels as well as amount of variation experienced in adulthood. The 
hypothesis that the benefits of testosterone trade off with immune function is based 
on the assumptions that immune functions are energetically costly, and that hor-
mones play important roles in the regulation of immunity. The immunomodulatory 
actions of these hormones are complex and varied, and altering the hormonal milieu 
may result in differential susceptibility to both infectious and chronic diseases.

7.2  Trade-Offs and Immunity

The immune system (see Box 7.1 and Fig. 7.1) is an excellent example of a reaction 
norm with both short- and long-term phenotypic plasticity in response to ecological 
stressors such as pathogens, allergens, and injury. Immunocompetence, or the abil-
ity to mount an effective immune response, is obviously an integral component of 
organismal life histories because it is crucial for maximizing evolutionary fitness. 
And because immunocompetence is an integral part of organismal life histories, it 
is predicted to be involved in physiological trade-offs with other functions (Sheldon 
and Verhulst 1996; Lockmiller and Deerenberg 2000; Norris and Evans 2000; 
Barnard and Behnke 2001). Selection for trade-offs is expected to be particularly 
strong under conditions of resource restriction, when development, maintenance, 
and activation of immune responses generate a substantial energetic burden 
(Sheldon and Verhulst 1996; Lockmiller and Deerenberg 2000; Schmid-Hempel 
2003; Muehlenbein and Bribiescas 2005) (see Box 7.2).

Optimized immune functions should trade off with a variety of critical life 
history functions in humans, including growth and reproduction. In children, 
chronic immune activation in various conditions is associated with growth falter-
ing, the failure to achieve normal growth potential (intestinal infections: 
Checkley et al. 1998; Campbell et al. 2003; Hadju et al. 1995; HIV infection: 
Arpadi 2000; inflammatory bowel disease: Ballinger et al. 2003). Likewise, 
nutrient deficiencies can have significant, long-term negative effects on the 
human immune system (Lunn 1991; Gershwin et al. 2000). Elevated C-reactive 
protein levels (a general measure of inflammation) are reported to be associated 
with reduced gains in height across 3 months in Tsimane children of Amazonian 
Bolivia (McDade et al. 2008). Boys in Nepal with high levels of acute-phase 
proteins (other proteins also associated with inflammatory states) have demon-
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strated stunted growth (Panter-Brick et al. 2000). Similar associations between 
childhood immune activation and decreased growth have been found in British 
children (Panter-Brick et al. 2004).

Clearly the literature points to associations between growth reduction and 
increased immune activation, consistent with expectations of life history theory. 
Illness during development may also delay menarche, as was the case for a sample 
of Danish women infected with Helicobacter pylori (Rosenstock et al. 2000) and in 
Guatemalan women with intestinal infections (Khan et al. 1996). Earlier menopause 
might also result from chronic immune activation (Cramer et al. 1983; Dorman 
et al. 2001). Trade-offs between immunity and reproduction can also be identified by 
observing correlated changes in hormonal mechanisms responsible for the mani-
fold interactions between these two systems. This is particularly the case for testos-
terone, estradiol, and dehydroepiandrosterone.

Box 7.1: Major Mechanisms of Human Immunity
Although a comprehensive review of the human immune system is beyond 
the scope of this discussion (see Paul 2008), here we offer a minute summary 
to orient the reader (Fig. 7.1). This is meant only to illustrate the complexity 
of the immune system’s dynamic responses. Typically, the human immune 
system is organized into two primary components innate (constitutive, non-
specific) and adaptive (acquired, specific). Innate responses include rapid 
mechanisms to block and eliminate foreign particles from host invasion, such 
as anatomical barriers, basic health behaviors, resident bacteria, humoral fac-
tors (e.g., lysozyme), and cells like neutrophils, monocytes, macrophages, 
basophils, mast cells, eosinophils, and natural killer cells. These cells exhibit 
a number of functions, from phagocytosis and cytokine secretion to chemo-
taxis and antigen processing and presentation. Lactoferrin, transferrin, heat 
shock proteins, and other soluble factors possess a variety of antimicrobial 
functions. The complement system includes enzymes that function to elimi-
nate microorganisms by promoting inflammatory responses, lysis of foreign 
cells, and mediation of phagocytosis.

Secondary immune responses during subsequent exposures are facilitated 
through acquired immune mechanisms that typically involve lymphocytes 
(both T and B cells). B cells, produced from stem cells in bone marrow, rep-
resent antibody-mediated (humoral) immunity that involves the secretion of 
antibodies or “immunoglobulins” (i.e., IgG, IgM, IgA, IgD, and IgE). 
Antibodies neutralize pathogens and their products, block binding of parasites 
to host cells, induce complement activation, promote cellular migration to 
sites of infection, and enhance phagocytosis, among other actions. T cells, 
which develop in the thymus, represent cellular immunity. Different subsets 
of T cells are identified by their surface markers (CD numbers) that regulate 
cellular activation and adhesion. Cytotoxic T cells (CD8) destroy infected 
host cells via perforin and lysis. Suppressor T cells downregulate T cell 

(continued)
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Major immune mechanisms in 
humans

Innate 
(constitutive, 
nonspecific) 

immunity

Anatomical barriers, resident 
nonpathogenic bacteria

Interferon, lysozyme, lactoferrin, 
transferrin, heat shock proteins

Macrophages, neutrophils, basophils, mast cells, 
eosinophils, natural killer cells, dendritic cells

Complement system

Health behaviors like 
avoidance, sanitation 

and hygiene

Adaptive (acquired, 
specific) Immunity

Lymphocytes

B cells (humoral/antibody-
mediated immunity)

Immunoglobulins 
(IgG, IgM, IgA, IgD and 

IgE)

T cells (cellular-mediated 
immunity)

Cytotoxic T cells 
(CD8)

Helper T cells 
(CD4)

Pro-inflammatory Th-1 cytokines 
(IFNg, TNFa, IL-1b, IL-2, IL-12)

Anti-inflammatory Th-2 cytokines 
(IL-4, IL-5, IL-6)

Immunosuppressive T-reg 
cytokines (IL-10, TGFb)

Other Th subsets          

Fig. 7.1 Major immune mechanisms in humans. An illustrated summary of the complexity of the 
immune system’s dynamic responses. For an explanation of the basic components (see Box 1). For 
a more comprehensive review of the human immune system (see Paul 2008). Modified from 
Muehlenbein (2010)

responses after infection. Helper T cells (CD4) secrete cytokines and activate 
B cells to secrete antibodies. Cytokines are glycoproteins that perform a vari-
ety of functions such as regulation of cell growth and development. Single 
cytokines can have multiple functions, multiple cytokines can have similar 
functions, some cytokines work together to facilitate single functions, and 
some cytokines have opposite functions to one another.

CD4 helper T cells are generally differentiated into major subsets depending 
on the type of cytokine produced. For example, Th-1 cytokines include, among 
others, interferon gamma (IFNγ), tumor necrosis factor alpha (TNFα), and vari-
ous interleukins (IL-1β, IL-2, IL-3, IL-12, etc.). These cytokines activate mac-
rophages, neutrophils, and natural killer cells, mediate inflammatory responses 
and cellular immunity (T cells), promote cytotoxicity toward tumor cells, and 
enhance chemotaxis of leukocytes. Th-2, anti-inflammatory cytokines include 
many interleukins (IL-4, IL-5, IL-6, etc.) that induce humoral immunity and 
antibody production (B cells), eosinophil activation, mast cell degranulation, 
goblet cell hyperplasia, mucin production, and intestinal mastocytosis (resulting 
in histamine release). Despite the fact that Th-1 and Th-2 cytokines act antago-
nistically to one another, both are usually present within the host at any given 
time, although during infection one phenotype may predominate. Other Th cell 
types include Th-17, Tregs, Th-3 and possibly others. Clearly, single measures 
of immunity are not capable of capturing the complexity of such a response.

Box 7.1: (continued)
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7.3  Testosterone and Immunity

Testosterone’s immunomodulatory actions have usually been described as suppressive, 
although the results of a multitude of studies using a variety of host species are 
surprisingly mixed (see Muehlenbein and Bribiescas 2005 for review). In vitro 
experiments suggest that testosterone can increase suppressor T cell populations 
(Weinstein and Bercovich 1981), reduce resistance against oxidative damage 
(Alonso-Alvarez et al. 2007), reduce T-helper cell function (Grossman et al. 1991; 
Wunderlich et al. 2002), inhibit cytokine (Daynes and Araneo 1991; Grossman 
1995) and antibody production (Olsen and Kovacs 1996), and impair natural killer 
cell and macrophage activity (Straub and Cutolo 2001). Testosterone may alter the 

Box 7.2: Human immunity Is Energetically Expensive
In humans, prolonged energy and nutrient restriction as well as intense physical 
exercise can lead to immunosuppression (Chandra and Newberne 1977; 
Gershwin et al. 1984; Chandra 1992; Kumae et al. 1994; Pedersen and Toft 
2000; Field et al. 2002); conversely, supplementation with calories, micro- 
and macronutrients can offset age-related declines in immunity (Wouters- 
Wesseling et al. 2005). The physical and psychological stress of physical 
exertion associated with elite athletic competitions or military training has 
been shown to be associated with increased incidence of upper respiratory 
tract infections (Peters and Bateman 1983; Nieman et al. 1990; Gomez- 
Merino et al. 2005). Acute infection in adult humans can cause abnormal pro-
tein loss—greater than 1 g per kilogram of body weight per day (Scrimshaw 
1992). In humans, the rapid, constant turnover of T and B cells is very likely 
to be energetically demanding (Macallan et al. 2004, 2005).

Severe perturbations like sepsis, burns, trauma, and surgery are associated 
with a 25–55 % increase in resting metabolic rate compared with that in 
healthy subjects, as well as a reduction in body weight and total body protein 
(Arturson 1978; Long 1977; Kreymann et al. 1993; Frankenfield et al. 1994; 
Biolo et al. 1997; Carlson et al. 1997; Uehara et al. 1999; Genton and Pichard 
2011), and an increase in nitrogen excretion (Carlson et al. 1997; Hasselgren 
and Fischer 1998). Fever typically results in a 7–15 % increase in resting met-
abolic rate for every 1 °C rise in body temperature (Barr et al. 1922; Roe and 
Kinney 1965; Elia 1992). Even in the absence of fever, resting metabolic rate 
is elevated during infection. For example, in a sample of 25 nonfebrile young 
men naturally infected with respiratory tract pathogens, resting metabolic rate 
was elevated by 14 % compared to samples taken after convalescence 
(Muehlenbein et al. 2010). Further research is needed to investigate changes 
in metabolic rates of adult humans during illnesses of varying severities and 
with different states of energy balance.

M.P. Muehlenbein et al.
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CD4+/CD8+ T-cell ratio in favor of CD8+ cells (Olsen et al. 1991; Weinstein and 
Bercovich 1981), and also favor the development of Th1 cytokines (Daynes et al. 
1991; Giltay et al. 2000). There is no reason, however, to believe a priori that tes-
tosterone should affect all aspects of immunity equally.

Results of in vivo studies of the relationship of testosterone levels to immune 
status in humans are equivocal. A majority of studies conducted on healthy partici-
pants reveal few associations between testosterone and immunity. For example, in a 
large sample of healthy military men, Granger et al. (2000) found no association 
between serum testosterone levels and T or B lymphocytes, although testosterone 
and IgA levels were negatively correlated. No association between testosterone and 
IgA was identified in a smaller study of young adults (van Anders 2010). In a study 
of healthy male athletes, there were no associations found between testosterone and 
the cytokines IL-6 or IL-1β (FitzGerald et al. 2012). In a sample of 94 healthy young 
adults with very detailed exclusion criteria and a multi-sample collection regime, 
salivary testosterone levels were actually directly (positively) related to a functional 
measure of innate immunity (the capability of lysozyme, antibodies, complement 
and cells in saliva to lyse and inhibit growth of pathogenic bacteria; see Muehlenbein 
et al. 2011; Prall et al. 2011). Of course, variation in sampling regime, assays or 
laboratory conditions may explain some of the differences between studies. It is also 
critical to limit conclusions based on single measures of immunity, as this obviously 
may not accurately reflect functional immunity in terms of the ability to fight 
 pathogens as a coordinated system (Sheldon and Verhulst 1996; Westneat and 
Birkhead 1998; Norris and Evans 2000). Assays must be utilized that represent func-
tional, integrated, biologically relevant measures of different immune pathways 
(Boughton et al. 2011; Demas et al. 2011).

It is also likely that host condition and energy availability play central roles in the 
immunomodulatory actions of testosterone. In healthy individuals with high 
resource availability and relatively low energy expenditure, the immunological 
costs of maintaining high testosterone levels could be negated. During a disease 
state, in contrast, when immune functions are upregulated, those with higher testos-
terone (or those whom are less efficient at lowering their testosterone level; see 
below) may pay higher additional energetic costs and thus exhibit higher morbidity. 
For example, in a population of Honduran men naturally infected with Plasmodium 
vivax, those with higher testosterone during infection had significantly higher levels 
of malaria parasitemia (Muehlenbein et al. 2005). These men also had elevated 
cortisol levels during peak illness compared to recovery or to age-matched healthy 
controls. It seems very likely that the hormonal milieu, of which testosterone is only 
a small part, and including the stress endocrine axis, affects the course and outcome 
of infection. Glucocorticoids may play a larger role in immunoregulation than does 
testosterone (Turnbull and Rivier 1999).

The assumption that testosterone is globally immunosuppressive—a common, 
but unsupported idea in the literature—is obviously inappropriate. Under certain 
conditions, testosterone’s actions on immunity may in fact be beneficial. Testosterone 
may actually help to prevent certain forms of immunopathology (Burger and Dayer 
2002). For example, testosterone suppresses circulating immune complexes during 
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malarial infection, which may help prevent immunopathological effects of this dis-
ease (Coleman et al. 1982). Testosterone may prevent the production of excess cyto-
kines that might otherwise lead to tissue damage during meningitis and rheumatoid 
arthritis (Beutler and Cerami 1988; Waage et al. 1989). Testosterone might also 
function to redistribute immune cells to different parts of the body during infection 
(Braude et al. 1999).

Another line of evidence that testosterone is involved in mediating trade-offs 
between reproduction and immunity lies in its demonstrated responsiveness to ill-
ness, injury, and immune activation. Testosterone levels typically decrease in 
response to illness, and often correspond to the severity of perturbation (Spratt et al. 
1993). Muehlenbein et al. (2005) identified lowered testosterone levels in Honduran 
men naturally infected with Plasmodium vivax compared with age-matched healthy 
controls. Similarly, in a sample of 25 nonfebrile young men naturally infected with 
respiratory tract pathogens, testosterone levels were lowered by an average of 30 % 
compared to those measured after recovery (Muehlenbein et al. 2010).

Variation in testosterone, and possibly other hormones, during illness may act as 
a physiological mechanism to decrease energy investment in reproductive effort 
(Muehlenbein and Bribiescas 2005; Muehlenbein 2008). This would be expected to 
be particularly important in high disease-risk environments and during times of 
limited energetic resources. Not only would depressed testosterone levels during 
immune activation work to limit energetic investment in energetically expensive 
anabolic functions, but it would also function to prevent immunosuppression by the 
higher testosterone levels that would be present otherwise (Folstad and Karter 1992; 
Wedekind and Folstad 1994; Sheldon and Verhulst 1996; Muehlenbein 2008). 
Measuring changes in other hormone levels, including estrogens and leptin, during 
illness and throughout convalescence would be informative.

7.4  Dehydroepiandrosterone and Immunity

As with testosterone, there has been a substantial amount of research on the 
immunological effects of dehydroepiandrosterone (DHEA). DHEA is a regnantoid 
hormone produced in the zona reticularis of the adrenal glands. DHEA and its 
sulfated ester DHEAS are implicated in a number of important physiological and 
behavioral functions. They appear to inhibit several innate immune processes, 
including inflammatory (Young et al. 1999; Coutinho et al. 2007) and complement 
responses (McLachlan et al. 1996). While this might help to ameliorate some 
chronic disorders, it could also increase the likelihood of impaired defense against 
infections. However, this liability appears to be counterbalanced by a stimulatory 
effect on adaptive immunity, including the development of lymphocytes (Daynes 
et al. 1990), particularly helper T cell activity (Suzuki et al. 1991), and proliferation 
of peripheral blood mononuclear cells (Sakakura et al. 2006). It is possible that 
DHEA also facilitates the production of Th2 over Th1 cytokines (Powell and 
Sonnenfeld 2006). DHEA has also been implicated in increasing Treg cytokine pro-
duction (Auci et al. 2007; Coles et al. 2005).

M.P. Muehlenbein et al.
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DHEA may enhance immune responses against influenza (Corsini et al. 2006), 
malaria (Kurtis et al. 2001), leishmaniasis (Galindo-Sevilla et al. 2007), intestinal 
helminthes (Coutinho et al. 2007), and HIV (Wisniewski et al. 1993). Given the 
diversity of immune responses responsible for controlling such infections, however, 
it is likely inappropriate to generalize DHEA’s immunostimulatory effects. Its 
effects may depend, in part, on the relative concentration of other hormones present. 
For example, in a population of 25 young men with nonfebrile acute respiratory 
tract infection, the ratio of DHEA to testosterone was higher during illness than 
after complete recovery (Prall and Muehlenbein 2011). We argue that elevated 
DHEA relative to testosterone might facilitate immune processes, and that a rever-
sal of the DHEA/testosterone ratio following convalescence would downregulate 
immunity to prevent autoimmune reactions and bias energy expenditure towards 
other functions, like reproduction. These endocrine responses presumably are adap-
tive shifts to modulate allocations toward more immediate needs.

7.5  Estrogen and Immunity

Estradiol and other estrogens appear to be immunostimulatory. Higher circulating 
estrogen levels in women compared to men may help explain why females typically 
exhibit higher CD4+ helper T cell Th-2 cytokine responses (Bijlsma et al. 1999), 
greater B cell function (Soucy et al. 2005), lowered rates of cellular apoptosis 
(Grimaldi et al. 2002), enhanced cellular proliferation (Cutolo et al. 2005), and 
greater antibody secretion (Straub 2007; Cutolo et al. 2012), all of which may trans-
late into lower morbidity and mortality from infectious diseases (Whitacre 2001). 
17-beta estradiol is associated with increased immunoglobulin and cytokine levels 
(Olsen and Kovacs 1996; Cutolo et al. 2006). Estrogens have been shown to upreg-
ulate the production of antioxidant enzymes (Vina et al. 2006) that may decrease 
oxidative damage to mitochondrial DNA (Borras et al. 2007) and protect against the 
oxygen radicals produced by inflammatory stress (Asaba et al. 2004). Moreover, 
estrogens exhibit immunoprotective and anti-inflammatory properties following 
trauma and severe blood loss (Angele et al. 2001; Knoferl et al. 2001) and they (in 
contrast to testosterone, which exacerbates) protect against neuronal damage during 
hypoxia associated with ischemic stroke in rats (Nishino et al. 1998).

Women are naturally exposed to varying levels of estrogens as a result of cyclical 
variation throughout the menstrual cycle, very high levels throughout pregnancy, 
and a relative absence following menopause. Such variation may have important life 
history outcomes (Abrams and Miller 2011). Elevated levels of estrogens during 
ovulation and pregnancy, for example, may promote implantation and maintenance 
of pregnancy through anti-inflammatory (Th2) effects and temporary suppression of 
cell-mediated immunity (Whitacre et al. 1999; Whitacre 2001) as well as innate 
responses (Wira et al. 2010). Elevated progesterone levels during pregnancy appear 
to inhibit cytokine production (Golightly et al 2011). Therefore, during times of 
particularly heavy investment in female reproduction, there appears to be less 
investment in immunity. This appears to change when estrogens fall prior to and 
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around menopause and there is an increase in cytokine responses (Pfeilschifter et al. 
2002). But in the absence of estrogens in postmenopausal women, immune func-
tions can become significantly impaired (Giglio et al. 1994).

Elevated levels of estrogens may contribute to the higher prevalence of autoim-
mune diseases seen in women (Tanriverdi et al. 2003; Straub 2007; Cutolo and 
Straub 2009). These disorders represent a leading cause of death and serious dis-
ability in young and middle-aged women in the USA (Cantorna and Mahon 2004), 
and the incidence in women compared to men is increasing significantly (Chighizola 
and Meroni 2012). Oral contraceptive users are at higher risk of inflammatory bowel 
diseases (Khalili et al. 2012) and systemic lupus erythematosus (Bernier et al. 
2009). The effects of hormone replacement therapy on health measures predicted by 
life history trade-offs are of critical consideration today.

7.6  Costs and Benefits of Hormone Therapy 
and Supplementation

Hormone supplementation is used clinically to treat a variety of conditions. One of 
the most well-studied examples is estrogen therapy in women, which is often used 
to treat menopausal symptoms. Estrogen therapy during the menopausal transition 
has been shown to substantially reduce the risk of osteoporosis. It is prescribed 
primarily for menopausal symptoms including hot flashes (or “flushes”), insomnia, 
and irritability; it may also improve mood, cognitive status, and memory (NAMS 
2012; Wharton et al. 2011) (see Chap. 9 in this volume). However, hormone therapy 
(estrogen, or estrogen in combination with progesterone) in older women has been 
implicated in some large clinical trials with an increased risk of blood clots, stroke, 
and breast cancer (Stuenkel et al. 2012). The role that estrogen plays in the risk of 
cardiovascular disease in older women remains controversial; this hormone, like 
testosterone, clearly is associated with complex physiological trade- offs that are 
still poorly understood.

Androgenic anabolic steroids are often used to increase quality of life and strength 
in both men and women (Emmelot-Vonk et al. 2008; Bhasin et al. 2010). Testosterone 
has been used to increase libido and improve mood (Monga et al. 2002; Gray et al 2005; 
Knapp et al. 2008; Panay et al. 2010), although results can be mixed (Kenny et al. 2004). 
Testosterone has also been used to improve memory and some measures of depression 
(Cherrier et al. 2001; Pope et al. 2003). Intramuscular injections of testosterone enan-
thate following severe burn injury can ameliorate protein catabolism, amino acid efflux, 
and loss of lean body mass (Ferrando et al. 2001). Similar results have been found using 
Oxandrolone, a synthetic derivative of testosterone, in pediatric burn patients 
(Tuvdendorj et al. 2011), and administration to a large sample of adult burn patients 
resulted in a significant reduction in mortality (Pham et al. 2008). Androgenic anabolic 
steroids can also ameliorate cachexia associated with cancer, renal and hepatic failure, 
chronic obstructive pulmonary disorder, muscular dystrophy, trauma following major 

M.P. Muehlenbein et al.

http://dx.doi.org/10.1007/978-1-4939-4038-7_9


109

surgery and anemia associated with leukemia or kidney failure (Mendenhall et al. 1995; 
Ferreira et al 1998; Basaria et al. 2001; Orr and Fiatarone 2004).

It is estimated that 6.5 million men in the USA will develop symptomatic, clini-
cally recognized androgen deficiency (including lowered mood, energy and libido) 
by 2025 (Araujo et al. 2007). Most men with androgen deficiency either do not seek 
treatment for it, or are asymptomatic (Hall et al. 2008). Regardless of the cutoff 
values used to diagnose low testosterone, the availability of treatments and advertis-
ing by drug companies have increased. The long-term effects of testosterone supple-
mentation on specific aspects of health, including immune function, are largely 
unknown. This problem is compounded by an increasing incidence of the use of 
anabolic androgenic steroids and other ergogenic (performance-enhancing) drugs 
for athletic enhancement or improvement of appearance (Cohen et al. 2007). The 
problem is not limited to professional athletes; particularly, worrisome is the dra-
matic rise in illegal steroid use in high school students (Calfee and Fadale 2006).

Steroid abuse in otherwise healthy individuals clearly can cause significant phys-
ical and psychological damage. These effects include a variety of conditions, from 
altered testicular function (Torres-Calleja et al. 2001) and acne (Walker and Adams 
2009) to liver failure (Ishak 1981) and heart failure (Achar et al. 2010). Psychological 
effects (e.g., depression, psychosis, violence, aggression, impulsiveness, etc.) can 
be quite severe (Pope and Katz 1994; Bahrke et al. 1996; Beaver et al. 2008). The 
legal (clinical) and illegal (recreational) use of anabolic steroids has also been linked 
to an increased risk of prostate cancer (Shaneyfelt et al. 2000; Gaylis et al. 2005), 
although some studies have identified no such links (Roddam et al. 2008; Drewa 
and Chlosta 2010). However, the responsiveness of prostate cancer to treatments 
using androgen receptor inhibitors, GnRH agonists and antagonists, and even 
 surgical castration do support an association between testosterone and prostate can-
cer severity and progression (Denmeade and Isaacs 2002).

The effects of testosterone supplementation on human immunity are not well 
investigated. In the entire volume on testosterone supplementation by Nieschlag 
et al. (2012), immunological consequences are mentioned only sporadically and 
briefly, and results of studies cited have yielded mixed results. Varying doses of 
testosterone do not appear to affect lymphocyte counts or viral load in HIV-infected 
men (Bhasin et al. 2000) and women (Choi et al. 2005; Looby et al. 2009). 
Testosterone treatment decreased CD4+ cell count in one study of postmenopausal 
women (Zofkova et al. 1995). In another study of otherwise healthy young men, 
there were no effects of testosterone enanthate on C-reactive protein levels (Singh 
et al. 2002), whereas Klinefelter’s (XXY) syndrome patients have been shown to 
exhibit decreases in antibody levels and T cell counts following treatment with tes-
tosterone, although the percentage of CD8+ cells increased (Kocar et al. 2000). 
Similarly mixed results were identified by Muehlenbein and Bhasin (2012): of 52 
healthy men ages 60–75 years, those who received monthly intramuscular injec-
tions of 600 mg of testosterone enanthate for 5 months showed increases in mono-
cyte and neutrophil percentages but lowered eosinophil and lymphocyte percentages. 
As stated before, testosterone clearly does not affect all aspects of immunity equally, 
even as a result of clinically controlled supplementation.
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There has also been an increased usage of DHEA by the American public as a 
dietary supplement in recent years (Baulieu et al. 2000). DHEA may influence 
metabolism and body composition, particularly through its conversion to testoster-
one and estradiol (Villareal and Holloszy 2004). Although other studies have identi-
fied no such relationships between body condition and DHEA level (Callies et al 
2001; Percheron et al. 2003), its use as an anti-obesity agent continues to grow (Ip 
et al. 2011). DHEA is also purported to ameliorate some measures of depression 
(Wolkowitz et al. 1999) and to increase libido (Arlt et al. 1999). However, given its 
role as a prohormone, there are likely many other risks to supplement use, including 
breast cancer (Gordon et al. 1990) and ovarian cancer (Helzlsouer et al. 1995); the 
magnitude of risk associated with this supplement remains unknown.

Like testosterone, DHEA supplementation does not appear to affect lymphocyte 
counts or viral load in HIV-infected individuals (Rabkin et al. 2006; Abrams et al. 
2007). Some studies have shown that DHEA supplementation may increase immune 
response to vaccine (Araneo et al. 1995), whereas other studies have found no such 
effects (Danenberg et al. 1997). DHEA may increase NK cell activity and other cel-
lular responses in elderly recipients (Khorram et al. 1997; Casson et al. 1993), although 
other studies have revealed no change in these measures (Kohut et al. 2003).

The effects of hormone supplementation on the immune system require much more 
research to determine if the benefits of hormone therapy truly outweigh the costs. A sim-
ple prediction based on life history theory is that alterations in the hormonal mechanisms 
responsible for facilitating trade-offs between immune and other functions will result in 
dysregulation of this balanced system. Future analyses must include detailed effects of 
androgens and estrogens in men and women,  utilizing various functional measures of 
adaptive immunity in a variety of experimental regimes: during health and illness of 
varying severity, and in people experiencing varying degrees of energy flux. Trade-offs 
between immunity and other functions may only become apparent under certain condi-
tions, or during particular critical windows at certain points in the life course.

7.7  Summary

Phenotypic plasticity in response to stochastic ecological stressors like pathogens 
represents a suite of complex adaptations, and our immune system epitomizes a 
reaction norm that allows for adaptation to pathogens, allergens, and injury. Because 
immune responses presumably generate a substantial energetic burden, optimization 
of immunity during illness should result in decreased energetic investment in other 
functions, including growth and reproduction. It should be possible to indirectly 
observe such trade-offs by measuring correlated changes in hormones, since endo-
crine mechanisms are sensitive to environmental cues that can otherwise facilitate 
modulation of immunity relative to reproductive effort and other investments.

Testosterone, DHEA, and estradiol all appear to have complex immunomodulatory 
actions. Whereas testosterone’s actions have usually been hypothesized to be suppres-
sive, results of studies addressing this premise are surprisingly mixed. The same can 
be said for the possible immunostimulatory actions of DHEA. Estradiol may also play 
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an important role in moderating risks of both infectious and autoimmune diseases. In 
short, the fluctuating, complex hormonal milieu may affect the course and outcome of 
disease directly through actions on immune effector mechanisms, as well as indirectly 
through adaptive shifts in life history allocation decisions. Although hormone supple-
mentation clearly has beneficial actions under certain conditions, its effects on human 
immunity are not well investigated. Long- term augmentation of these hormonal medi-
ators of life history trade-offs may impose significant costs on immunity against both 
infectious and chronic diseases.
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